Collaborative Evolutionary Reinforcement Learning

论文链接:论文传送门
官方pytorch代码实现:代码传送门

介绍

这篇论文是我之前发的ERL论文的改进版本(ERL介绍链接)这篇文章提出的核心要点可以总结为两个:
1.不同的策略都共享同一经验池的经验,提高采样效率
2.多个未来折扣率不同的Critic对Actor策略进行指导,从而提供更多样化探索,能更好的在策略空间进行探索

原理

1.概念介绍
为了更好的理解CERL框架,我们可以回想一下当初讲ERL的时候,ERL是进化算法和强化学习的结合,其中强化学习部分采用的是DDPG,也就是一对actor网络和一对critic网络。而现在CERL就是对ERL中强化学习部分进行了改进,把DDPG这部分只由一对actor和critic网络给换成了多对。每一对的未来收益折扣率不相等。这就是这个方法的改进。可以结合下面这张图来理解上面这段文字
在这里插入图片描述

接下来,用上面画的CERL示意图,来说明论文当中的一些名词和概念。
1.先看那一对对的critic和actor,每一对criti

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值