论文链接:论文传送门
官方pytorch代码实现:代码传送门
介绍
这篇论文是我之前发的ERL论文的改进版本(ERL介绍链接)这篇文章提出的核心要点可以总结为两个:
1.不同的策略都共享同一经验池的经验,提高采样效率
2.多个未来折扣率不同的Critic对Actor策略进行指导,从而提供更多样化探索,能更好的在策略空间进行探索
原理
1.概念介绍
为了更好的理解CERL框架,我们可以回想一下当初讲ERL的时候,ERL是进化算法和强化学习的结合,其中强化学习部分采用的是DDPG,也就是一对actor网络和一对critic网络。而现在CERL就是对ERL中强化学习部分进行了改进,把DDPG这部分只由一对actor和critic网络给换成了多对。每一对的未来收益折扣率不相等。这就是这个方法的改进。可以结合下面这张图来理解上面这段文字。
接下来,用上面画的CERL示意图,来说明论文当中的一些名词和概念。
1.先看那一对对的critic和actor,每一对criti