莫比乌斯反演(洛谷P5221)

题意:
给一个n(1<=n<=1000000);

∏ i = 1 n ∏ j = 1 n l c m ( i , j ) g c d ( i , j ) ( m o d 104857601 ) \prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}(mod 104857601) i=1nj=1ngcd(i,j)lcm(i,j)(mod104857601)
题解:
公式推演:
∏ i = 1 n ∏ j = 1 n l c m ( i , j ) g c d ( i , j ) \prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)} i=1nj=1ngcd(i,j)lcm(i,j)

= ∏ i = 1 n ∏ j = 1 n i ∗ j g c d ( i , j ) 2 =\prod_{i=1}^n\prod_{j=1}^n\frac{i*j}{gcd(i,j)^2} =i=1nj=1ngcd(i,j)2ij

= ( ∏ i = 1 n ∏ j = 1 n i ∗ j ) ( ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) − 2 ) =(\prod_{i=1}^n\prod_{j=1}^ni*j)(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2}) =(i=1nj=1nij)(i=1nj=1ngcd(i,j)2)

= ( ∏ i = 1 n i n ∗ n ! ) ( ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) − 2 ) =(\prod_{i=1}^ni^n*n!)(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2}) =(i=1ninn!)(i=1nj=1ngcd(i,j)2)

= ( n ! ) 2 n ∗ ( ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) − 2 ) =(n!)^{2n}*(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2}) =(n!)2n(i=1nj=1ngcd(i,j)2)

= ( n ! ) 2 n ∗ ( ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) − 2 ) =(n!)^{2n}*(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j)^{-2}) =(n!)2n(i=1nj=1ngcd(i,j)2)

∏ i = 1 n ∏ j = 1 n g c d ( i , j ) \prod_{i=1}^n\prod_{j=1}^ngcd(i,j) i=1nj=1ngcd(i,j)拿出来单独看

∏ i = 1 n ∏ j = 1 n g c d ( i , j ) \prod_{i=1}^n\prod_{j=1}^ngcd(i,j) i=1nj=1ngcd(i,j)

= ∏ d = 1 n ∏ i = 1 n ∏ j = 1 n [ g c d ( i , j ) = = d ] =\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^n[gcd(i,j)==d] =d=1ni=1nj=1n[gcd(i,j)==d]

= ∏ d = 1 n d ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = d ] =\prod_{d=1}^nd^{\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d]} =d=1ndi=1nj=1n[gcd(i,j)==d]

= ∏ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ g c d ( i , j ) = = 1 ] =\prod_{d=1}^nd^{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[gcd(i,j)==1]} =d=1ndi=1dnj=1dn[gcd(i,j)==1]

s u m [ x ] = ∑ i = 1 x ϕ ( i ) sum[x]=\sum_{i=1}^x\phi(i) sum[x]=i=1xϕ(i)

由莫比乌斯反演可以得到:
( n ! ) 2 n ∗ ( ∏ d = 1 n d 2 s u m ⌊ n d ⌋ − 1 ) − 2 (n!)^{2n}*(\prod_{d=1}^nd^{2sum\lfloor\frac{n}{d}\rfloor-1})^{-2} (n!)2n(d=1nd2sumdn1)2

边上那个-2用欧拉降幂整掉,这题只给7MB空间,很容易被卡,用原地做法,分块也可以,分块确实可以更快点,但是得多开点空间,我这里就不用分块了
code:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+5;
const int mod=104857601;
int prime[80000],phi[N],tot=0;
ll fac=1;
inline int read() {
    int x=0,w=0;char ch=getchar();
    while(!isdigit(ch))w|=ch=='-',ch=getchar();
    while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
void init(int maxn){
    phi[1]=1;
    for(int i=2;i<maxn;i++){
        fac=fac*i%mod;
        if(!phi[i]){
            prime[tot++]=i;
            phi[i]=i-1;
        }
        for(int j=0;j<tot&&prime[j]*i<maxn;j++){
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    for(int i=1;i<maxn;i++)phi[i]=(phi[i-1]+phi[i])%(mod-1);
}
ll fast(ll x,ll y=mod-1){
    ll ans=1;
    while(y){
        if(y&1)ans=ans*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return ans;
}
int main()
{
    int n=read();
    init(n+1);
    ll ans1,ans2=1;
    ans1=fast(fac,2*n);
    for(int i=1;i<=n;i++){
        ll power=((2-4*phi[n/i])%(mod-1)+mod-1)%(mod-1);
        ans2=ans2*fast(i,power)%mod;
    }
    printf("%lld",ans1*ans2%mod);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Macarons_i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值