2024CVPR-13-点云分析参数迁移Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for

文章摘要:通过转移点云预训练模型点云分析取得了优异的性能。然而,现有的模型适应方法通常更新所有模型参数,即完全微调范式,这是低效的,因为它依赖于较高的计算成本(例如,训练gpu内存)和大量的存储空间。在本文中,我们旨在研究用于点云分析的参数高效迁移学习,并在任务性能和参数效率之间做出理想的权衡。为了实现这一目标,我们冻结了默认预训练模型的参数,然后提出了动态适配器,考虑到对下游任务的标记意义,它为每个令牌生成一个动态尺度。我们通过构建内部提示进一步将动态适配器与提示调优(dapt)无缝集成,捕获特定于实例的特征进行交互。在五个具有挑战性的数据集上进行的大量实验表明,与完整的微调对应物相比,所提出的 dapt 实现了卓越的性能,同时将可训练参数和训练 gpu 内存分别显着降低 95% 和 35%。代码可在 https://github.com/lmd0311/dapt 获得。

结论:在这项研究中,我们提出了一种简单而有效的参数高效迁移学习策略,名为 dapt 用于点云分析。所提出的 dapt 冻结预训练主干的参数,并利用动态适配器通过考虑显着性动态调整每个令牌。此外,我们进一步使用动态适配器来实现内部提示调整,更好地捕获特定于实例的特征。我们的方法提供了一种实用的解决方案,在不影响性能的情况下降低存储成本要求。一个限制是我们的方法是否可以在更复杂的任务中表现良好,例如 3d 对象检测和生成仍然不清楚,这是我们未来的工作。

目前存在的问题:

文章主要研究内容:

之前的研究:


 

论文方法

论文翻译:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值