论文阅读-2-多场景下点云数据建筑物分割方法研究

研究背景:

目前存在的问题:

  • 不同物体位于同一平面且距离较近时,难以准确识别其边缘信息,精确地识别相邻平面相交的公共点比较困难,容易导致这些公共点缺失。
    • Hough Transform 算法对建筑物进行平面分割时, 不仅计算量大且占用内存多;
      RANSAC 算法对估计模型参数的阈值选择较为敏感, 可能导致平面的过度分割;
      区域生长容易造成相邻平面相交的公共点缺失
  • 基于多视图的卷积神经网络模型难以捕获 3D 模型的内部结构;基于体素化的卷积神经网络模型的计 算复杂度呈指数级增长,因此其实用性相对较低                          
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值