研究背景:
目前存在的问题:
当不同物体位于同一平面且距离较近时,难以准确识别其边缘信息,精确地识别相邻平面相交的公共点比较困难,容易导致这些公共点缺失。
Hough Transform 算法对建筑物进行平面分割时, 不仅计算量大且占用内存多;RANSAC 算法对估计模型参数的阈值选择较为敏感, 可能导致平面的过度分割;区域生长容易造成相邻平面相交的公共点缺失 基于多视图的卷积神经网络模型难以捕获 3D 模型的内部结构;基于体素化的卷积神经网络模型的计 算复杂度呈指数级增长,因此其实用性相对较低