文章的主要研究内容:
文章阐述四方面内容:
弱监督:**图像级标签、边框标注、涂鸦标注和点标注**
领域自适应:**输入级别、特征级别和输出级别**
多模态:
实时:
总结存在问题:
如何在准确性和推理速度之间达到最佳的平衡?如何探索视频和图像序列之间的时域相关性?如何提高自适应语义分割方法的性能?如何通过上下文知识来提高模型的准确性?如何探索视频和图像序列之间的时域相关性?如何提高弱监督语义分割方法的模型性能?如何解决深层结构的灾难性遗忘问题?
基于转换器的语义分割方法**尚未得到综述。**
论文摘要与结论:
摘要;
语义分割的目标是根据语义信息对输入图像进行分割,并从给定的标签集中预测每个像素的语义类别。随着现代生活的逐渐智能化,越来越多的应用需要从图像中推断相关的语义信息,进行后续处理,如增强现实、自动驾驶、视频监控等。本文综述了基于深度学习的语义分割技术。因为语义分割需要大量的像素级注释,为了减少标注的细粒度要求,降低人工标注的经济和时间成本,本文研究了弱监督语义分割的工作。为了提高分割模型的泛化能力和鲁棒性,本文研究了语义分割领域自适应的工作。许多类型的传感器通