文物修复27|2023基于点云的工件碎片拼接和恢复研究进展

关键词:

Artifact fragments, 3D point cloud, Feature extraction, Fragment splicing

摘要:

由于环境原因,大多数Artifact都是碎片化的,Artifact的表面信息也是模糊的。传统的修复Artifact方法主要依靠考古学家手动修复它们,使用片段特征逐个比较每个片段,该方法将对碎片造成二次损伤。基于计算机技术,伪影片段的虚拟恢复可以快速获取最新的伪影挖掘数据,保留Artifact的数字信息,实现永久保存,并为后续的Artifact恢复提供先验知识。点云数据因其良好的信息深度而在Artifact虚拟恢复技术中得到了广泛的应用。本文以陶瓷、肉鸡、塞拉-棉战士和其他单个工件碎片为主要研究对象,3d激光扫描仪得到的点云数据作为主要研究数据。近年来,它全面分类和总结了计算机Artifact拼接的工作

1、介绍

虽然Artifact的保护技术得到了极大的改进,但它仍然面临着许多局限性和问题:

1)由于环境原因,Artifact遭受不同程度的腐蚀损伤;2)在Artifact挖掘部位,主要记录方法包括拍摄照片、手动记录、绘图和配准,导致单一内容;3)缺乏关于未挖掘Artifact的信息严重,传统的人工恢复不仅需要时间,而且会对Artifact造成二次损伤(miguel á., 2015);4)传统的恢复技术只能尽可能地保持Artifact的当前状态,不能避免对Artifact的破坏(nemoto t., 2023)。计算机技术不受虚拟恢复中的时间和空间的限制,为工件拼接提供了动态演示。数字工件可以有效地永久存储文化工件信息,确保工件保持在其原始状态,并为后续的恢复研究提供参考。总结了 terra-cotta片段的四个拼接算法和三种分类算法

拼接Artifact片段的本质是点云的拼接,因此本文参考近年来关于点云配准的其他文献。2022年,yang j.q.等(yang j.q., 2022.)总结了两个方面:基于多视图点云的粗配准和精细配准。然而,对于Artifact,除断裂部分外,每个片段之间几乎没有重叠,因此无法使用多视图进行配准。同年,li j.w.等(li j.w., 2022,)从两个方面总结:基于非学习和基于学习的。在基于非学习的点云拼接方法中,他们从特征检测、特征描述方法和特征拼接三个方面详细阐述了基于特征的拼接方法。然而,点云对象很宽,对受损Artifact片段的拼接没有显著的参考。基于陶瓷、苯并和兵马俑等破碎Artifact,本文以3d激光扫描仪得到的点云数据作为研究对象,详细总结了近年来Artifact的拼接方法。

Artifact恢复的原始方式主要是通过二维图像,对书法、绘画、针织织物和其他Artifact具有重要意义,但对具有一定厚度的兵战士、陶瓷和其他Artifact有一定的局限性。lu h.r.等(lu h.r., 2015.) 使用跳跃运动设备获得手部运动状态,并通过人机交互实现Artifact片段的拼接。可以通过根据不同的特征选择不同的方法来恢复Artifact。整体技术过程如图1所示。

1. 文化文物碎片的特征提取

除了断裂的部分外,缺乏的Artifact的片段之间几乎没有重叠。因此,在从裂缝部分提取特征时,需要考虑以下问题:1)对于严重损伤的伪影,提取的特征能否准确描述裂缝部分; 2)提取的碎片特征是否满足自动拼接要求; 3)如果特征提取方法应用于不同材料的各种文化片段。本章将特征提取分为三类:片段特征轮廓线提取、断裂表面特征点提取和表面特征提取。

结论

本文介绍了四个部分:工件碎片特征提取;工件片段分类;邻接片段选择;片段拼接。使用单个工件的点云数据作为研究对象。尽管实现了这种拼接技术,但仍有许多问题:1)对于严重破碎的工件碎片,提取的特征不能很好地描述碎片;2)工件碎片点云数据同时具有边缘轮廓特征、断裂表面特征和表面纹理特征,拼接过程中只使用一个特征,导致信息浪费;3)基于监督学习的分类方法对工件碎片有主要的局限性,无监督学习的分类方法需要对碎片特征进行高级考虑,最终的分类结果是模糊的;4)当碎片相互拼接在一起时,会出现累积误差,影响对齐精度。为了解决文化伪影片段的自动拼接问题,提高拼接的效率和准确性,未来文化伪影片段拼接的发展趋势预计如下:1)在特征提取过程中,每个片段可以通过结合专家先验知识、历史知识(cohen f., 2013;太阳,j.z., 2017)等等多种特征来描述;2)在完成片段伪影后,修复孔洞(zhang y.h., 2017;zhang j., 2019);4)拼接过程中应考虑所有片段,减少错误的积累;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值