【面试系列】买卖股票的最佳时机系列

买卖股票的最佳时机:
原题链接

思路:

  • 思路 1 1 1
    考虑枚举第 k k k天买入,那么 [ k + 1 , n ] [k+1,n] [k+1,n]天都可以卖出,所以考虑第 k k k天后,大于第 k k k天价格的最大价格。那么就是一个经典的单调栈问题,求每个数字后的最大数。
    该解决方法可以返回第 k k k天买入后,之后卖出可获得的最大利润。
    时间复杂度: O ( n ) O(n) O(n),空间复杂度: O ( n ) O(n) O(n)

  • 思路 2 2 2
    根据思路 1 1 1,那么时间复杂度不可再优,考虑如何优化空间复杂度。
    思路 1 1 1是从前往后看,我们可以考虑从后往前看,即枚举第 k k k天卖出,那么需要 [ 1 , k − 1 ] [1,k-1] [1,k1]天中最小的那天买入即可,维护一个最小的买入时间。
    时间复杂度: O ( n ) O(n) O(n),空间复杂度: O ( 1 ) O(1) O(1)

代码:

  • 代码 1 1 1
class Solution {
public:
    int maxProfit(vector<int>& p) {
        vector<int> stk;
        stk.push_back(p[0]);
        
        int res = 0;
        for(int i = 1; i < p.size(); ++i) {
            while(!stk.empty() && stk.back() >= p[i]) stk.pop_back();
            if(!stk.empty()) res = max(res, p[i] - stk[0]);
            stk.push_back(p[i]);
        }
        return res;
    }
};
  • 代码 2 2 2
class Solution {
public:
    int maxProfit(vector<int>& p) {
        int min_p = p[0];
        int res = 0;
        for(int i = 1; i < p.size(); ++i) {
            res = max(res, p[i] - min_p);
            min_p = min(min_p, p[i]);
        }
        return res;
    }
};

买卖股票的最佳时机II
原题链接

思路:
本题一天内可以多次买入卖出股票,那么我们就可以做一个短视的人,只要当前这天卖出相对于前一天可以获得正利润,那么我们就当前天卖出,也就是我们第 k k k天是否买入取决于第 k + 1 k+1 k+1天卖出后是否可以获得正利润,如果可以我们第 k k k天就买入,然后在第 k + 1 k+1 k+1天卖出。
最后的代码实现上,我们只需要和 0 0 0取个 m a x max max,如果是 0 0 0说明第 k k k天没必要买入。

代码:

class Solution {
public:
    int maxProfit(vector<int>& p) {
        int res = 0, n = p.size();
        for(int i = 1; i < n; ++i) res += max(0, p[i] - p[i - 1]);
        return res;
    }
};

买卖股票的最佳时机III
原题链接

思路
由于最多只有两次买售,且两次买售不能在同一天,因此可以考虑每次买入卖出的情况。
我们设置 d p [ n ] [ 4 ] dp[n][4] dp[n][4] d p [ i ] [ 0 ] , d p [ i ] [ 1 ] , d p [ i ] [ 2 ] , d p [ i ] [ 3 ] dp[i][0],dp[i][1],dp[i][2],dp[i][3] dp[i][0],dp[i][1],dp[i][2],dp[i][3]分别表示在第 i i i天时的第一次买入,第一次卖出,第二次买入,第二次卖出。那么状态转移如下:

  • d p [ i ] [ 3 ] = m a x ( d p [ i − 1 ] [ 3 ] , d p [ i − 1 ] [ 2 ] + p [ i ] ) dp[i][3]=max(dp[i-1][3], dp[i-1][2]+p[i]) dp[i][3]=max(dp[i1][3],dp[i1][2]+p[i])
  • d p [ i ] [ 2 ] = m a x ( d p [ i − 1 ] [ 2 ] , d p [ i − 1 ] [ 1 ] − p [ i ] ) dp[i][2]=max(dp[i-1][2],dp[i-1][1]-p[i]) dp[i][2]=max(dp[i1][2],dp[i1][1]p[i])
  • d p [ i ] [ 1 ] = m a x ( d p [ i − 1 ] [ 1 ] , d p [ i − 1 ] [ 0 ] + p [ i ] ) dp[i][1]=max(dp[i-1][1],dp[i-1][0]+p[i]) dp[i][1]=max(dp[i1][1],dp[i1][0]+p[i])
  • d p [ i ] [ 0 ] = m a x ( d p [ i − 1 ] [ 0 ] , − p [ i ] ) dp[i][0]=max(dp[i-1][0],-p[i]) dp[i][0]=max(dp[i1][0],p[i])

其中初始化时,由于可能出现递减的情况,
那么最差的情况就是不进行买售,此时利润为 0 0 0
因此初始化为: d p [ 0 ] = { − p [ 0 ] , 0 , − p [ 0 ] , 0 } dp[0]=\{-p[0],0,-p[0],0\} dp[0]={p[0],0,p[0],0},之后从 1 1 1开始遍历
最后返回 d p [ 3 ] dp[3] dp[3]即可

那么由于每次只会用到前一次的答案,所以自然会想到滚动数组模拟
所以我们可以去掉一维,然后倒序枚举状态转移即可。

代码:

class Solution {
public:
    int maxProfit(vector<int>& p) {
        int n = p.size();
        int dp[4] = {-p[0], 0, -p[0], 0};
        
        for(int i = 1; i < n; ++i) {
            dp[3] = max(dp[3], dp[2] + p[i]);
            dp[2] = max(dp[2], dp[1] - p[i]);
            dp[1] = max(dp[1], dp[0] + p[i]);
            dp[0] = max(dp[0], -p[i]);
        }
        return dp[3];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值