LeetCode-62

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?

在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?

Examle

input
m = 3, n = 2
output
3
input
m = 7, n = 3
output
28

Note

  • 1 < = m , n < = 100 1 <= m, n <= 100 1<=m,n<=100
  • 题目数据保证答案小于等于 2 ∗ 1 0 9 2 * 10 ^ 9 2109

思路

  • 第一眼想到 d f s dfs dfs,看了下数据范围,明显超时
  • 然后想到 d p dp dp d p [ i ] [ j ] = d [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=d[i-1][j]+dp[i][j-1] dp[i][j]=d[i1][j]+dp[i][j1];
  • 或者数学里面的排列组合 C m + n − 2 m − 1 C_{m+n-2}^{m-1} Cm+n2m1

代码如下

dp

class Solution {
public: int s[101][101];
public:
    int uniquePaths(int m, int n) {
        memset(s,0,sizeof(s));
        for(int i=1;i<=m;i++)
            s[i][1]=1;
        for(int i=1;i<=n;i++)
            s[1][i]=1;
        for(int i=2;i<=m;i++)
        {
            for(int j=2;j<=n;j++)
            {
                s[i][j]=s[i-1][j]+s[i][j-1];
            }
        }
        return s[m][n];
    }
};

排列组合

class Solution {
public:
    int uniquePaths(int m, int n) {
        long long ans = 1;
        for (int x = n, y = 1; y < m; ++x, ++y) {
            ans = ans * x / y;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值