376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [ 1 , 7 , 4 , 9 , 2 , 5 ] [1,7,4,9,2,5] [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [ 1 , 4 , 7 , 2 , 5 ] [1,4,7,2,5] [1,4,7,2,5] 和 [ 1 , 7 , 4 , 5 , 5 ] [1,7,4,5,5] [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
Example
input |
---|
[1,17,5,10,13,15,10,5,16,8] |
output |
7 |
input |
---|
[1,2,3,4,5,6,7,8,9] |
output |
2 |
Note
- 实例1中序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
- 用 O ( n ) O(n) O(n) 时间复杂度完成此题
思路
- 首先 O ( n ) O(n) O(n)的复杂度,基本上遍历一遍就要得到结果
- 根据题意,要获得更长的摆动序列,保证相邻位置的差值越大越好
- 所以就可以利用栈,分类处理情况,然后整理优化代码
- 栈+贪心就可以完成了
代码如下
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
stack<int>s;
for(int i=0;i<nums.size();i++)
{
if(s.size()>=2&&nums[i]!=s.top())
{
int a=s.top();s.pop();
if((a<s.top()&&nums[i]>a)||(a>s.top()&&nums[i]<a))
s.push(a);
}
if(s.empty()||(s.size()>0&&nums[i]!=s.top()))
s.push(nums[i]);
}
return s.size();
}
};