动态规划总结

对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

二维dp数组01背包
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
        int goods = weight.length;  // 获取物品的数量
        int[][] dp = new int[goods][bagSize + 1];

        for (int j = weight[0]; j <= bagSize; j++) {
            dp[0][j] = value[0];
        }

        for (int i = 1; i < weight.length; i++) {
            for (int j = 1; j <= bagSize; j++) {
                if (j < weight[i]) {
                    dp[i][j] = dp[i-1][j];
                } else {
                    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
                }
            }
        }
    }
一维dp数组(滚动数组)

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
    }

注意:
一维dp只能先遍历物品,再遍历背包。
二维dp遍历顺序先后不影响结果。

分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].
    示例 2:
  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.
    提示:
  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100
class Solution {
    public boolean canPartition(int[] nums) {
        int sum=0;
        for(int num:nums){
            sum+=num;
        }
        if(sum%2==1) return false;
        int target=sum/2;
        int[] dp=new int[target+1];
        for(int i=0;i<nums.length;i++){
            for(int j=target;j>=nums[i];j--){
                dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }
        if(dp[target]==target)
            return true;
        else
            return false;
    }
}
目标和

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5
    解释:
  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3
    一共有5种方法让最终目标和为3。
    提示:
  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。
  1. 确定dp数组以及下标的含义
    dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
  2. 确定递推公式
    有哪些来源可以推出dp[j]呢?
    只要搞到nums[i]),凑成dp[j]就有dp[j - nums[i]] 种方法。
    例如:dp[j],j 为5,
  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
    那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。
  1. dp数组如何初始化
    从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
    这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。
    其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。
    如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。
    所以本题我们应该初始化 dp[0] 为 1。
public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
        if ( target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
在这里插入图片描述
对于纯完全背包问题一维dp数组来说,其实两个for循环嵌套顺序是无所谓的! 如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了

组合总和 Ⅳ

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。
示例:

  • nums = [1, 2, 3]
  • target = 4
    所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)
    请注意,顺序不同的序列被视作不同的组合。
    因此输出为 7。

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!
弄清什么是组合,什么是排列很重要。
组合不强调顺序,(1,5)和(5,1)是同一个组合。
排列强调顺序,(1,5)和(5,1)是两个不同的排列。
但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。
如果本题要把排列都列出来的话,只能使用回溯算法爆搜。
3. dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。
至于dp[0] = 1 有没有意义呢?
其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。
至于非0下标的dp[i]应该初始为多少呢?
初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。
4. 确定遍历顺序
个数可以不限使用,说明这是一个完全背包。
得到的集合是排列,说明需要考虑元素之间的顺序。
本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 0; i <= target; i++) {
            for (int j = 0; j < nums.length; j++) {
                if (nums[j] <= i) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }

动态规划(子数组、子序列,非背包类型)

最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
    示例 2:
  • 输入:nums = [0,1,0,3,2,3]
  • 输出:4
    示例 3:
  • 输入:nums = [7,7,7,7,7,7,7]
  • 输出:1
    提示:
  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 104
  1. dp[i]的定义
    本题中,正确定义dp数组的含义十分重要。
    dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
    为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。
  2. 状态转移方程
    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
    所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
    注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
  3. dp[i]的初始化
    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp=new int[nums.length];
        for(int i=0;i<dp.length;i++){
            dp[i]=1;
        }
        int maxval=0;
        for(int i=0;i<dp.length;i++){
            for(int j=0;j<i;j++){
                if(nums[j]<nums[i]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
                }
            }
            maxval=Math.max(maxval,dp[i]);
        }
        return maxval;
    }
}
最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
    示例 2:
  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。
    提示:
  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int[] dp=new int[nums.length];
        for(int i=0;i<dp.length;i++){
            dp[i]=1;
        }
        int max=1;
        for(int i=0;i<dp.length-1;i++){
            if(nums[i+1]>nums[i]){
                dp[i+1]=dp[i]+1;
            }
            max=Math.max(max,dp[i+1]);
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值