掌握数据库概念设计
掌握数据库逻辑设计
掌握数据库物理设计
数据库设计
一、数据库概念设计
一个设计良好的数据库,在很大程度上决定了系统的成功与否。
一般分为:数据库概念设计、数据库逻辑设计、数据库物理设计
概念设计是数据库设计的核心环节。通过对用户需求进行综合、归纳与抽象,形成一个独立具体DBMS的概念模型
1,数据库概念设计的目标
定义和描述应用领域设计的数据范围
获取信息模型
描述数据的属性特征
描述数据之间的关系
定义和描述数据的约束
说明数据的安全性要求
支持用户的各种数据处理需求
保证信息模型能转化成数据库的逻辑结构
(即数据库模式)。
2,概念设计的依据及过程
- 依据:
- 数据库概念设计以需求分析的结果为依据,即需求说明书、DFD图以及在需求阶段收集到的应用领域中的各类报表等。
- 结果:
- 概念设计的结果是概念模型(ER)与概念设计说明书
- 过程:
- (1)明确建模目标(模型覆盖范围)
- (2)定义实体集(自底向上标识和定义实体集)
- (3)定义联系(实体间关联关系)
- (4)建立信息模型(构造ER模型)
- (5)确定实体集属性(属性描述一个实体集的特征或性质)
- (6)对信息模型进行集成与优化(检查和消除命名不一致、结构不一致等)
概念设计是DB设计的核心环节。概念数据模型是对现实世界的抽象和模拟。
3,概念模型设计(数据库建模)
- 概念设计目前采用最广泛的的ER建模方法。将现实世界抽象为具有属性的实体及联系。
- 1976年,Peter.Chen提出E-R模型(Entity- Relationship Model),即实体联系模型,用E-R图来描述数据库的概念模型。
- 观点:世界是由一组称作实体的基本对象和
这些对象之间的联系构成的。
与E-R模型有关的概念
-
实体(Entity)或实例(Instance):
- 客观存在并可相互区分的事物叫实体
- 如学生张三、工人李四、计算机系、数据库概论
-
实体集(Entity Set):
- 同型实体的集合称为实体集
- 如全体学生
-
属性:描述一个实体的性质的。一个实体可以由若干个属性来刻画,每个属性的取值范围称为域
-
码(Key)(键):
- 实体集中唯一标识每一个实体的属性或属性组合。
- 用来区别同一实体集中的不同实体的称作主码。
- 一个实体集中任意两个实体在主码上的取值不能相同。
-
联系(Relationship):
- 描述实体和实体之间的联系。 如学生与老师间的授课关系,学生与学生间有班长关系。
- 联系也可以有属性。 如学生与课程之间有选课联系,每个选课联系都有一个成绩作为其属性。
- 同类联系的集合称为联系集。
-
实体间的联系有三类:一对一(1:1),一对多(1:n),多对多(n:n)
E-R模型的表示
4,IDEF1X建模方法
IDEF1X与第2章中介绍的IDEF0是一个系列的建模工具。
IDEF0是功能建模方法。
IDEF1X是数据建模方法。
详见教程P39 。
5,概念设计实例 (商场经营管理系统)
建模目标:支持顾客管理、采购与库存管理、销售管理、
人力资源管理、财务管理等多项业务活动。
定义实体集:顾客、会员卡、员工、收银台、销售单据、
供应商、商品、采购入库单据(对应教程P43页7个矩形框)
定义联系(难点):依据语义约束定义。
建立信息模型(详见教程P43-44图3.8,3.9)
确认实体属性
对信息模型进行集成与优化
二、数据库逻辑设计
1,逻辑设计的任务:
将概念模型(如ER图)转化为DBMS支持的数据模型(如关系模型),并对其进行优化。
2,逻辑设计的依据和阶段目标:
3,补充相关概念
关系模型
数据依赖
候选码、主码、外码
数据规范化
范式
关系模型
- 三种主要数据模型:层次模型、网状模型、关系模型。
其中**关系模型**简单灵活,拥有着坚实的理论基础,当前最流行的数据模型
- 关系模型就是用**二维表格结构**来表示实体及实体之间联系的模型
- 关系的描述称为关系模式(Relation Schema)。关系模式由五部分组成,即它是一个五元组:R(U, D, DOM, F)
R:关系名 U:组成该关系的属性名集合 D:属性组U中属性所来自的域 DOM:属性到域的映射 F:属性组U上的一组数据依赖
由于D、DOM对模式设计的关系不大,这里把关系模式简化为一个三元组:
R<U, F>,当且仅当U上的一个关系R满足F时,R称为关系模式R<U,F>的一个关系
E-R图是概念模型
- 关系数据库设计的核心:关系模式设计
- 关系模型的设计目标:按照一定的原则从数量众多而又相互关联的数据中,构造出一组既能较好地反映现实世界,而又有良好的操作性能的关系模式。
- 新奥尔良法,数据库设计步骤:
需求分析—〉概念结构设计—〉逻辑结构设计—〉物理结构设计
E-R图 关系模式设计
数据依赖
-
定义:设R(U)是一个属性集U上的关系模式,X和Y是U的子集。若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称“X函数确定Y”或“Y函数依赖于X”,记作X→Y
-
关系内部属性与属性之间的一种约束关系
- 是现实世界属性间相互联系的抽象
- 数据的内在性质
- 语义的体现
-
完整性约束的表现形式
- 限定属性的取值范围,如年龄<60
- 定义属性间值的相互关联(主要体现于值的相等与否),这就是数据依赖
-
数据依赖的类型:函数依赖、多值依赖。
-
函数依赖:(Functional Dependency,FD)
普遍存在于生活中,这种依赖关系类似于数学中的函数y=f(x),自变量x确定之后,相应的函数值y也就唯一地确定了。
如关系:公民(身份证号,姓名,地址,工作单位)
身份证号一确定,则其地址就唯一确定,因此地址函数依赖身份证号。
而姓名一确定,不一定能确定地址。 -
多值依赖:(Multivalued Dependency,MD)
教师号可能多值依赖课程号,因为给定一个(课程号,参考书号)的组合,可能有对应多个教师号。这是因为多个老师可以使用相同或不同的参考书上同一门课。
简单点讲,函数就是唯一确定的关系;多值依赖却不能唯一确定。 -
函数依赖的几种特例
- 1,平凡函数依赖与非平凡函数依赖
如果X→Y,且Y X,则X→Y 称为非平凡函数依赖。
若Y X ,则称X→Y为平凡函数依赖。
由于Y X 时,一定有X→Y,平凡函数依赖必然成立,没有意义,所以一般所说的函数依赖总是指非平凡函数依赖。 - 2,完全函数依赖与部分函数依赖
如果X→Y ,且对于任何X’ X,都有X’
Y,则称y完全依赖于x,记作X Y。
如果X→Y,但Y不完全依赖于X,则称Y部分函数依赖于X,记作X Y。- 3,传递函数依赖
如果X→Y , Y→Z,且Y X, Y X,则称Z传递函数依赖于X。记作X 传递→Z 。
例:学生(学号,姓名,系名,系主任)
显然系主任传递函数依赖于学号,
因为学号→系名,系名→系主任
- 3,传递函数依赖
- 1,平凡函数依赖与非平凡函数依赖
候选码、主码、外码
- 某属性组的值能唯一确定整个元组的值,则称该属性组为候选码或侯选关键字。
候选码如果有多个,可以选其中的一个作为主码(Primary Key) 。 - 属性或属性组X不是关系模式R的码(既不是主码也不是候选码),但X是另一个关系模式的码,则称X是R的外部码,也称外码( Foreign key ) 。
数据规范化
- 关系数据库的设计主要是关系模式设计。关系模式设计的好坏直接影响到数据库设计的成败。将关系模式规范化,是设计较好的关系模式的惟一途径。
- 关系模式的规范化主要是由关系范式来完成的。
- 关系模式的规范化:把一个低一级的关系模式分解为高一级关系模式的过程。
- 关系数据库的规范化理论是数据库逻辑设计的工具。
- 目的:尽量消除插入、删除异常,修改复杂,数据冗余的问题。
范式
范式:关系模式满足的约束条件称为范式。根据满足规范化的程度不同,范式由低到高分为1NF,2NF,3NF,BCNF,4NF,5NF。
- 1NF:如果关系模式R,其所有属性都是不可再分的基本数据项,则称R属于第一范式,R∈1NF。
- 2NF:如关系模式R∈1NF,且每个非主属性完全函数依赖于主码,则称R属于第二范式,R∈2NF。
- 3NF:如关系模式R∈2NF,且R中的每个非主属性不传递依赖于R的主码,则称关系R是属于第3范式的,R∈3NF
例子:
4,数据库逻辑设计方法
- 设计逻辑结构分为三步:
- 1,将概念结构转化为一般的关系模型
- 2,将转化来的关系模型向特定的DBMS支持下的数据模型转换
- 3, 对数据模型进行优化
如果是关系型数据库管理系统,就应该将概念模型转换为关系模型,即将E-R图中的实体和联系转换为关系模式。
- 数据库逻辑模型的产生:
概念模型按一定的规则可以转换成数据模型。转换规则如下:- 一个实体转换成一个关系模式
- 一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。
- 一个1:n联系可以转换成一个独立的关系模式,也可以与n端对应的关系模式合并。
- 一个m:n联系转换为一个关系模式
- 三个或者三个以上实体间的一个多元联系转换为一个关系模式
- 同一实体集的实体间的联系,也可以按1:1、1:n、m:n三种情况分别处理
- 一个实体转换成一个关系模式
三、数据库物理设计
1,物理设计概述
物理数据库设计是设计数据库的存储结构和物理实现方法
- 目的:将数据的逻辑描述转换为实现技术规范,设计数据存储方案,以便提供足够好的性能并保存数据库数据的完整性、安全性、可靠性
2,数据库的物理结构
数据库逻辑结构设计与数据库具体物理实现无关。
物理设备上的存储结构与存取方式成为数据库的物理结构
- 数据库中的数据以文件形式存储在外设存储介质上。
- 一个文件在物理上可看作是存放记录的一系列磁盘块组成的,成为物理文件。
- 数据库的物理结构需要解决如下问题:
- 文件组织、文件结构、文件存取、索引技术
3,索引(Index)
是数据库中独立的存储结构,作用是提供一种无需扫描每个页面(存储表格数据的物理块)而快速访问数据页的方案。
索引技术(Indexing)是一种快速数据访问的技术
-
索引技术的关键:
- 建立记录域或取值(如图书术语)到记录的物理地址(如页码)间的映射关系,即索引。
- 索能提高性能,但是有代价的。
- 设计和创建索引时,应确保对性能的提高程度大于在存储空间和处理资源方面的代价
-
索引技术的分类:有序索引(利用索引文件)、散列索引(利用哈希函数)
- 有序索引:
- 索引文件机制,利用索引文件(索引记录组成)实现记录域(查找码,排序域)取值到记录物理地址间的映射关系。
- 数据文件(主文件)和索引文件(索引记录或索引项的集合)时有序索引技术的两个主体,数据文件常采用顺序文件结构。
- 散列索引:哈希索引机制,利用散列函数实现记录域取值到记录物理地址间的直接映射关系
- 有序索引:
-
几种主要的有序索引:
- 1)有序索引中,是否按照其查找码指定顺序与数据文件中的记录顺序相一致,分为聚集索引和非聚集索引。一个数据文件只可建立一个聚集索引,但可建立多个非聚集索引。
- 2)稠密索引与稀疏索引:
如果数据文件中每个查找码值在索引文件中都对应一个索引记录,则该索引称为稠密索引,查找速度快。
如果索引文件只包含了数据文件中的部分查找码,则该索引称为稀疏索引。 - **3)**主索引(主码属性集上建立索引)与辅索引(非主属性上建立的索引)
- **4)**唯一索引(索引列不包含重复值)
- 5)单层索引(线性索引,每个索引项顺序排列直接指向数据文件中的数据记录)和多层索引(大量数据文件中的采用多层树型(B,B+树)索引快速定位)。
3,数据库的物理设计
- 目标:目标是得到存储空间占用少,数据访问效率高和维护代价低的数据库物理模式。数据库物理存储与存取,与DBS所依赖的硬件环境、操作系统和DBMS密切相关。目前绝大部分DBS都是关系数据库系统。
- 环节:数据库设计主要包括5个环节。
-
1)数据库逻辑模式描述
根据数据库逻辑结构信息设计目标DBMS可支持的关系表(这里称为进本表)的模式信息,这个过程成为数据库逻辑模式描述。
关系模式机器视图转换成基本表和视图,利用完整性机制(如触发器)设计面向应用的业务规则。
SQL Server采用T-SQL语言。
基本表选择合适文件结构的原则:
堆文件:当数据文件数据量少,频繁插入,删除或者更新操作。
顺序文件:当用户查询条件定义在查找码上面。
散列文件:当用户查询是基于散列阈值的等值匹配,尤其是访问顺序是随机的。
聚集文件、索引文件 -
2)文件的组织与存取设计
基本原则:
1,根据应用情况将易变部分与稳定部分、存取频率较高部分分开存放以提高系统性能。
2,分析理解数据库事务访问特性:使用事务-基本表交叉引用矩阵;估计各事务执行频率;汇总每张基本表各事务操作频率信息;根据结构设计文件结构。
可以考虑将表和索引分别放在不同磁盘上。在查询时,由于两个磁盘驱动器分别在工作,因而可以保证物理读写速度比较快。- 影响数据文件存储结构的因素:存取时间、存储空间利用率、维护代价
这三个方面常常是相互矛盾的 - 解决办法:适当冗余、增加聚簇功能
- 影响数据文件存储结构的因素:存取时间、存储空间利用率、维护代价
-
什么是存取路径:
- 在关系数据库中,选择存取路径主要指确定如何建立索引
- 对同一个关系要建立多条存取路径才能满足多用户的多种应用要求。
- 物理设计的第一个任务就是要确定选择哪些存取方法。
-
DBMS常用存取方法:
- 索引方法,目前主要是B+树索引方法
- 聚簇(Cluster)方法
- HASH方法
-
基本表是否建立索引的原则:(选择、简答)
※ 经常需要查询,连接统计操作,且数据量大的表,可建立索引。
※ 通常在表的主码,where查询中使用率较高的属性,参与连接操作的属性,group by,order by 的属性 ,这些属性上面建立索引,可以加快查询效率。- 一个(组)属性经常在操作条件中出现
- 一个(组)属性经常在链接操作的链接条件中出现
- 一个(组)属性经常作为聚集函数的参数
-
建立聚集索引原则:
- 检索数据时,常以某个(组)属性作为排序、分组条件。
- 检索数据时,常以某个(组)属性作为检索限制条件,并返回大量数据。
- 表中某个(组)的值重复性较大
-
3)数据分布设计
-
不同类型数据的物理分布
将应用数据(基本表)、索引、日志、数据库备份数据等合理安排在不同介质中。 -
应用数据的划分与分布
- 水平划分与垂直划分(分布式数据库系统比较常用)、根据时间地点划分、根据数据使用特征划分
-水平划分是将基本表划分为多张具有相同属性、结构完全相同的子表,子表包含元组时基本表中元组的子集 - 垂直划分是将一张基本表划分为多张子表,每张子表必须包含基本表的主键。每张子表包含的属性时原基本表的子集。
- 水平划分与垂直划分(分布式数据库系统比较常用)、根据时间地点划分、根据数据使用特征划分
-
4)确定系统配置
-
5)物理模式评估:对数据库设计结果从存取时间、存储空间、维护代价等方面进行评估,重点是时间和空间效率。
-
本章内容常考题型主要是选择和填空,其中常考的内容有一个关系的范式判别以及函数依赖的判别,ER图的画法(必考),索引的分类区分,例如:
例1:设有关系模式R(A,B,C,D),存在函数依赖集:{A->B,C->D},则R最高可属于(A)
A:1NF B:2NF C: 3NF D:BCNF