李宏毅2021春机器学习课程笔记--类神经网络(三)

本文探讨了如何通过Adagrad、RMSProp和Adam等方法自动调整学习率,针对不同误差表面的形状调整步长,特别是在平坦区增大学习率,陡峭区减小。关键概念包括critical point、动量m、sigma调整和学习率衰减。讨论了warmup策略在ResNet和Transformer中的应用,总结了Adam学习率的三部分调整:方向、大小和整体趋势控制。
摘要由CSDN通过智能技术生成

视频链接: https://www.bilibili.com/video/BV1Wv411h7kN?p=13

自动调整学习率 learning rate

critical point 有时不是训练时的最大障碍->当loss不再下降时, gradient真的很小吗?

下图 在 error surface反复横跳
在这里插入图片描述
对于convex(等高线为椭圆)的error surface,设置大/小的学习率的结果 -无法靠近critical point
在这里插入图片描述
在某一方向比较平坦,希望learning rate大,
比较陡峭则:smaller learning

Adaptive learning:

Adagrad

在这里插入图片描述
将步长调节为与参数i和与时间有关的参数

将可调节参数化为过去梯度的平均再开根号
在这里插入图片描述
上述为Adagrad的核心思想

RMSProp

最早出现在 Hinton的公开课
在这里插入图片描述
在这里插入图片描述
方向 梯度 都加权
在这里插入图片描述
自动调整学习率:
梯度小的地方sigma小,作为分母使得学习率变大。
在这里插入图片描述
学习率衰减 使得越接近终点的 走的越缓慢
在这里插入图片描述

warm up: learning rate先变大后变小
RAdam论文有详细讲解

残差网络便使用了这个调参策略
(0.01->0.1)
Transformer:
在这里插入图片描述
m与sigama都考虑过去所有gradiant
但动量momentum是是把过去所有的梯度直接相加,考虑了方向
sigma考虑大小:

在这里插入图片描述
总结:
Adam 学习率调整分为三部分:
动量m 调整方向
sigma 调整大小
η (一般decay or warm up)控制整体趋势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值