通信原理知识总结

本文概述了通信原理的基本概念,包括通信过程、主要资源、信源特性、通信网及信道特性。介绍了调制过程,如幅度调制、频率调制等,并探讨了模拟与数字通信的区别。还详细阐述了香农信息容量定理及其在通信系统中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景与预览

该部分内容为本书中后续章节奠定了基础。

通信过程

通信的大体过程如下:

  1. 信号的产生
  2. 信号描述
  3. 信号编码
  4. 已编码信号的传输
  5. 信号解码
  6. 信号恢复
    在这里插入图片描述

通信的两种基本模式:

  1. 广播
  2. 点对点

主要通信资源

通信系统的两种主要资源:发射功率信道带宽1
根据通信信道中两种资源的重要程度可将信道分为两类:功率受限带宽受限
噪声是通信系统中不可避免的,为此引入参数SNR来衡量噪声的影响
S N R = lg ⁡ S 0 n 0 B SNR=\lg\dfrac{S_0}{n_0B} SNR=lgn0BS0
其中 S 0 S_0 S0表示信号功率, n 0 n_0 n0表示噪声功率谱密度, B B B表示噪声带宽

信源

信源范围
话音300Hz~3.4kHz
音乐15kHz以上
图像带宽4.2MHz,NTSC
计算机数据bps~Mbps

通信网

通信信道

通信信道的特性决定了信息携带的容量和系统的质量,分别对应于 有效性可靠性2

调制过程

  • 连续波调制(CW)
    • 幅度调制(AM)
    • 频率调制(FM)
    • 相位调制(PM)
  • 脉冲调制
    • 脉冲幅度调制(PAM)
    • 脉冲持续时间调制(PDM)

模拟和数字通信

香农信息容量定理

信息量定义 I = l o g 2 ( 1 p )   b i t I=log_2(\dfrac{1}{p})\space bit I=log2(p1) bit

信噪比
S N R = S 0 n 0 B SNR=\dfrac{S_0}{n_0B} SNR=n0BS0

信道容量 C = B ∗ l o g 2 ( 1 + S N R )   b / s C=B*log_2(1+SNR) \space b/s C=Blog2(1+SNR) b/s
lim ⁡ B → ∞ C = 1.44 S 0 n 0 \lim_{B \to \infty} C = 1.44\dfrac {S_0} {n_0} BlimC=1.44n0S0
信息容量定义为通过信道无差错地传输信息的最大速率。在实际信道中,实际信号速率 R R R小于 C C C
信息容量定理的意义:

  1. 提供了一个在给定信道带宽 B B B和接收信噪比的情况下,理论上能达到的数据传输速率。用比值 η = R C \eta=\dfrac {R}{C} η=CR来衡量数字通信系统地有效性。 η \eta η越接近于1,有效性越好
  2. 提供了权衡信道带宽和信噪比的基础
  3. 提供了比较两种调制方式的抗噪声性能的理想化框架

一个数字通信问题

第1章 随机过程

知识回顾

随机过程
Ω = { ϖ } \Omega=\lbrace {\varpi} \rbrace Ω={ϖ}是随机试验 E E E的样本空间,对每个固定的 t ∈ T , ∣ T ∣ = + ∞ t\in T,|T|=+\infty tT,T=+,有 X = X ( ϖ , t ) ϖ ∈ Ω , t ∈ T X=X\left(\varpi,t\right)\quad\varpi\in\Omega,t\in T X=X(ϖ,t)ϖΩ,tT t t t T T T中变动,得到依赖于 t t t的一族随机变量,则称 { X = X ( ϖ , t ) , ϖ ∈ Ω , t ∈ T } \lbrace{X=X\left(\varpi,t\right),\varpi\in\Omega,t\in T\rbrace} {X=X(ϖ,t),ϖΩ,tT}为随机过程,记为 { X ( t ) , t ∈ T } \lbrace{X\left(t\right),t\in T\rbrace} {X(t),tT} X ( t ) X\left(t\right) X(t), X ( ϖ , t ) X\left(\varpi,t\right) X(ϖ,t)

随机过程即为定义在同一个 Ω \Omega Ω上的无穷多个随机变量的集合族

对一个固定的 ϖ j \varpi_j ϖj { X ( ϖ j , t ) , t ∈ T } \lbrace{X\left(\varpi_j,t\right),t\in T\rbrace} {X(ϖj,t),tT} t t t的普通函数,成为随机过程对应于试验结果 ϖ j \varpi_j ϖj的一个样本函数(轨迹)

随机过程的有限维分布函数族
随机过程 { X ( t ) , t ∈ T } \lbrace{X\left(t\right),t\in T\rbrace} {X(t),tT},若固定 t ∈ T t\in T tT, X ( t ) X\left(t\right) X(t)为随机变量
定义1: ∀ x ∈ R , F ( x , t ) = P ( X ( t ) ≤ x ) \forall x\in R,F\left(x,t\right)=P\left(X\left(t\right)\leq x\right) xR,F(x,t)=P(X(t)x)称为 X ( t ) X\left(t\right) X(t)的分布函数;参数 t t t T T T中变化,则 { F ( x , t ) ∣ t ∈ T } \lbrace{F\left(x,t\right)|t\in T\rbrace} {F(x,t)tT}称为 X ( t ) X\left(t\right) X(t)的一维分布函数族
定义2: ∀ t 1 , t 2 ∈ T \forall t_1,t_2\in T t1,t2T F ( x 1 , x 2 , t 1 , t 2 ) = P ( X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 ) F\left(x_1,x_2,t_1,t_2\right)=P\left(X\left(t_1\right)\leq x_1,X\left(t_2\right)\leq x_2\right) F(x1,x2,t1,t2)=P(X(t1)x1,X(t2)x2)称为 X ( t ) X\left(t\right) X(t)的二维分布函数族

随机过程的数字特征
均值函数: m X ( t ) = E [ X ( t ) ] = ∫ − ∞ ∞ x f X ( t ) ( x ) d x m_X\left(t\right)=E\left[X\left(t\right)\right]=\int_{-\infty}^{\infty}xf_{X(t)}(x)dx mX(t)=E[X(t)]=xfX(t)(x)dx
均方值函数: ψ X 2 ( t ) = E [ X 2 ( t ) ] \psi^2_X\left(t\right)=E\left[X^2\left(t\right)\right] ψX2(t)=E[X2(t)]
方差函数: D X ( t ) = E [ X ( t ) − m X ( t ) ] 2 D_X\left(t\right)=E\left[X\left(t\right)-m_X\left(t\right)\right]^2 DX(t)=E[X(t)mX(t)]2
均方差函数: D X ( t ) \sqrt{D_X\left(t\right)} DX(t)
自相关函数: R X ( s , t ) = E [ X ( s ) X ( t ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f X ( t 1 ) , X ( t 2 ) ( x 1 , x 2 ) d x 1 d x 2 R_X\left(s,t\right)=E\left[X\left(s\right)X\left(t\right)\right]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f_{X(t_1),X(t_2)}(x_1,x_2)dx_1dx_2 RX(s,t)=E[X(s)X(t)]=x1x2fX(t1),X(t2)(x1,x2)dx1dx2 特别地, R X ( t , t ) = ψ X 2 ( t ) R_X\left(t,t\right)=\psi^2_X\left(t\right) RX(t,t)=ψX2(t)
协方差函数: C X ( s , t ) = c o v ( X ( s ) , X ( t ) ) = E ( X ( s ) − m X ( s ) ) ( X ( t ) − m X ( t ) ) = R X ( s , t ) − m X ( s ) m X ( t ) C_X\left(s,t\right)=cov\left(X\left(s\right),X\left(t\right)\right)=E\left(X\left(s\right)-m_X\left(s\right)\right)\left(X\left(t\right)-m_X\left(t\right)\right)=R_X\left(s,t\right)-m_X\left(s\right)m_X\left(t\right) CX(s,t)=cov(X(s),X(t))=E(X(s)mX(s))(X(t)mX(t))=RX(s,t)mX(s)mX(t)
互相关函数: R X Y ( t , u ) = E [ ( X ( t ) Y ( u ) ] R Y X ( t , u ) = E [ ( Y ( t ) X ( u ) ] R ( t , u ) = [ R X ( t , u ) R X Y ( t , u ) R Y X ( t , u ) R Y ( t , u ) ] R_{XY}(t,u)=E[(X(t)Y(u)]\newline R_{YX}(t,u)=E[(Y(t)X(u)]\newline \bold R(t,u)=\begin{bmatrix} R_X(t,u) & R_{XY}(t,u) \\ R_{YX}(t,u) & R_Y(t,u) \end{bmatrix} RXY(t,u)=E[(X(t)Y(u)]RYX(t,u)=E[(Y(t)X(u)]R(t,u)=[RX(t,u)RYX(t,u)RXY(t,u)RY(t,u)]如果 X ( t ) X(t) X(t) Y ( t ) Y(t) Y(t)分别是平稳的且是联合平稳的,则 R ( τ ) = [ R X τ ) R X Y ( τ ) R Y X ( τ ) R Y ( τ ) ] R X Y ( τ ) = R Y X ( − τ ) \bold R(\tau)=\begin{bmatrix} R_X\tau) & R_{XY}(\tau) \\ R_{YX}(\tau) & R_Y(\tau) \end{bmatrix}\newline R_{XY}(\tau)=R_{YX}(-\tau) R(τ)=[RXτ)RYX(τ)RXY(τ)RY(τ)]RXY(τ)=RYX(τ)

平稳过程

严平稳(狭义平稳)
F X ( t 1 + τ ) , . . . , X ( t k + τ ) ( x 1 , . . . x k ) = F X ( t 1 ) , . . . , X ( t k ) ( x 1 , . . . x k ) F_{X\left(t_1+\tau\right),...,X\left(t_k+\tau\right)}\left(x_1,...x_k\right)=F_{X\left(t_1\right),...,X\left(t_k\right)}\left(x_1,...x_k\right) FX(t1+τ),...,X(tk+τ)(x1,...xk)=FX(t1),...,X(tk)(x1,...xk)对所有 τ , k \tau,k τ,k,和所有可能的观测时间 t 1 , . . . , t k t_1,...,t_k t1,...,tk都成立时,则称随机过程 X ( t ) X\left(t\right) X(t)是严平稳的
宽平稳(平稳)
满足

  1. ∀ t , μ X ( t ) = μ X \forall t,\mu_X\left(t\right)=\mu_X t,μX(t)=μX
  2. ∀ t 1 , t 2 , R X ( t 1 , t 2 ) = R X ( t 2 − t 1 ) \forall t_1,t_2,R_X\left(t_1,t_2\right)=R_X\left(t_2-t_1\right) t1,t2,RX(t1,t2)=RX(t2t1)

的随机过程称为平稳过程
严平稳 ⇎ \nLeftrightarrow 宽平稳
有有限二阶矩的严平稳 ⇒ \rArr 宽平稳
联合平稳
满足

  1. ∀ t , μ X ( t ) = μ X , μ Y ( t ) = μ Y \forall t,\mu_X\left(t\right)=\mu_X,\mu_Y(t)=\mu_Y t,μX(t)=μX,μY(t)=μY
  2. ∀ t 1 , t 2 , R X Y ( t 1 , t 2 ) = R X Y ( t 2 − t 1 ) \forall t_1,t_2,R_{XY}\left(t_1,t_2\right)=R_{XY}\left(t_2-t_1\right) t1,t2,RXY(t1,t2)=RXY(t2t1)

的随机过程 X ( t ) X(t) X(t) Y ( t ) Y(t) Y(t)称为是联合平稳的
平稳过程的性质
对于一个平稳过程,我们定义其自相关函数为 R X ( τ ) = E [ X ( t + τ ) X ( t ) ] R_X(\tau)=E[X(t+\tau)X(t)] RX(τ)=E[X(t+τ)X(t)]

  1. R X ( 0 ) = E [ X 2 ( t ) ] R_X(0)=E[X^2(t)] RX(0)=E[X2(t)]
  2. R X ( τ ) = R X ( − τ ) R_X(\tau)=R_X(-\tau) RX(τ)=RX(τ)
  3. ∣ R X ( τ ) ∣ ≤ R X ( 0 ) |R_X(\tau)|\le R_X(0) RX(τ)RX(0)
    证明: E [ ( X ( t + τ ) ± X ( t ) ) 2 ] ≥ 0 E [ X 2 ( t + τ ) ] ± 2 E [ X ( t + τ ) X ( t ) ] + E [ X 2 ( t ) ] ≥ 0 2 R X ( 0 ) ± 2 R X ( τ ) ≥ 0 − R X ( 0 ) ≤ R X ( τ ) ≤ R X ( 0 ) E[(X(t+\tau)\pm X(t))^2]\ge0\newline E[X^2(t+\tau)]\pm2E[X(t+\tau)X(t)]+E[X^2(t)]\ge0\newline 2R_X(0)\pm2R_X(\tau)\ge0\newline -R_X(0)\le R_X(\tau)\le R_X(0) E[(X(t+τ)±X(t))2]0E[X2(t+τ)]±2E[X(t+τ)X(t)]+E[X2(t)]02RX(0)±2RX(τ)0RX(0)RX(τ)RX(0)
    在这里插入图片描述

遍历过程(各态历经)

数学期望(集平均):随机过程在整个过程上的平均
长期样本平均(时间平均):随机过程 X ( t ) X(t) X(t)在某一固定时间 t k t_k tk的均值
什么时候能用时间平均代替集平均?

考虑一个观测区间定义在 − T ≤ t ≤ T -T\le t\le T TtT内的平稳过程 X ( t ) X(t) X(t)的样本函数 x ( t ) x(t) x(t) x ( t ) x(t) x(t)的直流成分定义为时间平均 μ x ( T ) = 1 2 T ∫ − T T x ( t ) d t \mu_x(T)=\frac{1}{2T}\int_{-T}^{T}x(t)dt μx(T)=2T1TTx(t)dt μ x \mu_x μx为一个随机变量,它的值由观测时间区间和选定的样本函数决定。因为假定 X ( t ) X(t) X(t)是平稳的,所以 E [ μ x ( T ) ] = 1 2 T ∫ − T T E [ x ( t ) ] d t = 1 2 T ∫ − T T μ X d t = μ X \begin{aligned}E[\mu_x(T)]&=\frac{1}{2T}\int_{-T}^{T}E[x(t)]dt\\ &=\frac{1}{2T}\int_{-T}^{T}\mu_Xdt\\ &=\mu_X\end {aligned} E[μx(T)]=2T1TTE[x(t)]dt=2T1TTμXdt=μX因此,时间平均 μ x ( T ) \mu_x(T) μx(T)代表集平均 μ X \mu_X μX的一个无偏估计。
如果满足下面两个条件,则称 X ( t ) X(t) X(t)均值遍历的:

  • lim ⁡ T → ∞ μ x ( T ) = μ X \lim_{T \to \infty} \mu_x(T) = \mu_X limTμx(T)=μX
  • lim ⁡ T → ∞ v a r ( μ x ( T ) ) = 0 \lim_{T \to \infty} var(\mu_x(T) )= 0 limTvar(μx(T))=0

此外,自相关函数 R x ( τ , t ) R_x(\tau ,t) Rx(τ,t)是在区间 − T ≤ t ≤ T -T\le t\le T TtT内观测的样本函数 x ( t ) x(t) x(t)的时间平均。定义样本函数 x ( t ) x(t) x(t)的时间平均自相关函数为 R x ( τ , t ) = 1 2 T ∫ − T T x ( t + τ ) x ( t ) d t R_x(\tau ,t)=\frac{1}{2T}\int_{-T}^Tx(t+\tau )x(t)dt Rx(τ,t)=2T1TTx(t+τ)x(t)dt若满足下面两个条件,则称一个过程 x ( t ) x(t) x(t)自相关函数遍历的:

  • lim ⁡ T → ∞ R x ( τ , T ) = R X ( τ ) \lim_{T\to \infty}R_x(\tau ,T)=R_X(\tau) limTRx(τ,T)=RX(τ)
  • lim ⁡ T → ∞ v a r [ R x ( τ , T ) ] = 0 \lim_{T\to \infty}var[R_x(\tau ,T)]=0 limTvar[Rx(τ,T)]=0

一个具有遍历性的随机过程一定是平稳的,但反之不一定

随机过程通过一个线性时不变滤波器

在这里插入图片描述
假定X(t)是一个平稳过程
Y ( t ) = ∫ − ∞ ∞ h ( τ 1 ) X ( t − τ 1 ) d τ 1 μ Y ( t ) = E [ Y ( t ) ] = E [ ∫ − ∞ ∞ h ( τ 1 ) X ( t − τ 1 ) d τ 1 ] Y(t)=\int_{-\infty}^{\infty}h(\tau_1)X(t-\tau_1)d\tau_1\newline \begin{aligned}\mu_Y(t)&=E[Y(t)]\\&=E[\int_{-\infty}^{\infty}h(\tau_1)X(t-\tau_1)d\tau_1]\end{aligned} Y(t)=h(τ1)X(tτ1)dτ1μY(t)=E[Y(t)]=E[h(τ1)X(tτ1)dτ1]
如果 E [ X ( t ) ] E[X(t)] E[X(t)]对所有 t t t是有限的,并且系统是稳定的,则可以交换积分和求期望的顺序,从而
μ Y ( t ) = ∫ − ∞ ∞ h ( τ 1 ) E [ X ( t − τ 1 ) ] d τ 1 = ∫ − ∞ ∞ h ( τ 1 ) μ X ( t − τ 1 ) d τ 1 = μ X ∫ − ∞ ∞ h ( τ 1 ) d τ 1 = μ X H ( 0 ) \begin{aligned}\mu_Y(t)&=\int_{-\infty}^{\infty}h(\tau_1)E[X(t-\tau_1)]d\tau_1\\&=\int_{-\infty}^{\infty}h(\tau_1)\mu_X(t-\tau_1)d\tau_1\\&=\mu_X\int_{-\infty}^{\infty}h(\tau_1)d\tau_1\\&=\mu_XH(0)\end{aligned} μY(t)=h(τ1)E[X(tτ1)]dτ1=h(τ1)μX(tτ1)dτ1=μXh(τ1)dτ1=μXH(0)这里, H ( 0 ) H(0) H(0)是系统的一个零频率(直流)响应。

考虑 Y ( t ) Y(t) Y(t)的自相关函数。
R Y ( t , u ) = E [ Y ( t ) Y ( u ) ] = E [ ∫ − ∞ ∞ h ( τ 1 ) X ( t − τ 1 ) d τ 1 ∫ − ∞ ∞ h ( τ 2 ) X ( u − τ 2 ) d τ 2 ] \begin{aligned}R_Y(t,u)&=E[Y(t)Y(u)]\\&=E[\int_{-\infty}^{\infty}h(\tau_1)X(t-\tau_1)d\tau_1\int_{-\infty}^{\infty}h(\tau_2)X(u-\tau_2)d\tau_2]\end{aligned} RY(t,u)=E[Y(t)Y(u)]=E[h(τ1)X(tτ1)dτ1h(τ2)X(uτ2)dτ2]
假设 E [ X 2 ( t ) ] E[X^2(t)] E[X2(t)]对所有 t t t是有限的,并且系统是稳定的,则可以交换积分和求期望的顺序,则
R Y ( t , u ) = ∫ − ∞ ∞ d τ 1 h ( τ 1 ) ∫ − ∞ ∞ d τ 2 h ( τ 2 ) E [ X ( t − τ 1 ) X ( u − τ 2 ) ] = ∫ − ∞ ∞ d τ 1 h ( τ 1 ) ∫ − ∞ ∞ d τ 2 h ( τ 2 ) R X ( t − τ 1 , u − τ 2 ) = ∫ − ∞ ∞ ∫ − ∞ ∞ h ( τ 1 ) h ( τ 2 ) R X ( τ − τ 1 + τ 2 ) d τ 1 d τ 2 \begin{aligned}R_Y(t,u)&=\int_{-\infty}^{\infty}d\tau_1h(\tau_1)\int_{-\infty}^{\infty}d\tau_2h(\tau_2)E[X(t-\tau_1)X(u-\tau_2)]\\&=\int_{-\infty}^{\infty}d\tau_1h(\tau_1)\int_{-\infty}^{\infty}d\tau_2h(\tau_2)R_X(t-\tau_1,u-\tau_2)\\&=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}h(\tau_1)h(\tau_2)R_X(\tau-\tau_1+\tau_2)d\tau_1d\tau_2\end{aligned} RY(t,u)=dτ1h(τ1)dτ2h(τ2)E[X(tτ1)X(uτ2)]=dτ1h(τ1)dτ2h(τ2)RX(tτ1,uτ2)=h(τ1)h(τ2)RX(ττ1+τ2)dτ1dτ2

结论:如果一个稳定的线性时不变滤波器输入的是一个平稳随机过程,那么它的输出也是一个平稳随机过程

在上式中令 τ = 0 \tau=0 τ=0,则
E [ ( Y 2 ( t ) ] = R Y ( 0 ) = ∫ − ∞ ∞ ∫ − ∞ ∞ h ( τ 1 ) h ( τ 2 ) R X ( τ 1 + τ 2 ) d τ 1 d τ 2 E[(Y^2(t)]=R_Y(0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}h(\tau_1)h(\tau_2)R_X(\tau_1+\tau_2)d\tau_1d\tau_2 E[(Y2(t)]=RY(0)=h(τ1)h(τ2)RX(τ1+τ2)dτ1dτ2结果为一个常数

功率谱密度

h ( τ 1 ) = ∫ − ∞ ∞ H ( f ) e x p ( j 2 π f τ 1 ) d f E [ Y 2 ( t ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ [ ∫ − ∞ ∞ H ( f ) e x p ( j 2 π f τ 1 ) d f ] h ( τ 2 ) R X ( τ 2 − τ 1 ) d τ 1 d τ 2 = ∫ − ∞ ∞ d f H ( f ) ∫ − ∞ ∞ d τ 2 h ( τ 2 ) ∫ − ∞ ∞ R X ( τ 2 − τ 1 ) e x p ( j 2 π f τ 1 ) d τ 1 h(\tau_1)=\int_{-\infty}^{\infty}H(f)exp(j2\pi f\tau_1)df\newline \begin{aligned}E[Y^2(t)]&=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}H(f)exp(j2\pi f\tau_1)df]h(\tau_2)R_X(\tau_2-\tau_1)d\tau_1d\tau_2\\&=\int_{-\infty}^{\infty}dfH(f)\int_{-\infty}^{\infty}d\tau_2h(\tau_2)\int_{-\infty}^{\infty}R_X(\tau_2-\tau_1)exp(j2\pi f\tau_1)d\tau_1\end{aligned} h(τ1)=H(f)exp(j2πfτ1)dfE[Y2(t)]=[H(f)exp(j2πfτ1)df]h(τ2)RX(τ2τ1)dτ1dτ2=dfH(f)dτ2h(τ2)RX(τ2τ1)exp(j2πfτ1)dτ1 τ = τ 1 − τ 2 \tau=\tau_1-\tau_2 τ=τ1τ2,则
E [ Y 2 ( t ) ] = ∫ − ∞ ∞ d f H ( f ) ∫ − ∞ ∞ d τ 2 h ( τ 2 ) e x p ( j 2 π f τ 2 ) ∫ − ∞ ∞ R X ( τ ) e x p ( − j 2 π f τ ) d τ E[Y^2(t)]=\int_{-\infty}^{\infty}dfH(f)\int_{-\infty}^{\infty}d\tau_2h(\tau_2)exp(j2\pi f\tau_2)\int_{-\infty}^{\infty}R_X(\tau)exp(-j2\pi f\tau)d\tau E[Y2(t)]=dfH(f)dτ2h(τ2)exp(j2πfτ2)RX(τ)exp(j2πfτ)dτ其中, H ∗ ( f ) = ∫ − ∞ ∞ d τ 2 h ( τ 2 ) e x p ( j 2 π f τ 2 ) H^*(f)=\int_{-\infty}^{\infty}d\tau_2h(\tau_2)exp(j2\pi f\tau_2) H(f)=dτ2h(τ2)exp(j2πfτ2)是滤波器频率响应的复共轭,则
E [ Y 2 ( t ) ] = ∫ − ∞ ∞ d f ∣ H ( f ) ∣ 2 ∫ − ∞ ∞ R X ( τ ) e x p ( − j 2 π f τ ) d τ E[Y^2(t)]=\int_{-\infty}^{\infty}df|H(f)|^2\int_{-\infty}^{\infty}R_X(\tau)exp(-j2\pi f\tau)d\tau E[Y2(t)]=dfH(f)2RX(τ)exp(j2πfτ)dτ
S X ( f ) = ∫ − ∞ ∞ R X ( τ ) e x p ( − j 2 π f τ ) d τ S_X(f)=\int_{-\infty}^{\infty}R_X(\tau)exp(-j2\pi f\tau)d\tau SX(f)=RX(τ)exp(j2πfτ)dτ定义为平稳随机过程 X ( t ) X(t) X(t)的功率谱密度或功率谱,则
E [ Y 2 ( t ) ] = ∫ − ∞ ∞ ∣ H ( f ) ∣ 2 S X ( f ) d f E[Y^2(t)]=\int_{-\infty}^{\infty}|H(f)|^2S_X(f)df E[Y2(t)]=H(f)2SX(f)df
功率谱密度的特性
S X ( f ) = ∫ − ∞ ∞ R X ( τ ) e x p ( − j 2 π f τ ) d τ R X ( τ ) = ∫ − ∞ ∞ S X ( f ) e x p ( j 2 π f τ ) d f S_X(f)=\int_{-\infty}^{\infty}R_X(\tau)exp(-j2\pi f\tau)d\tau\newline R_X(\tau)=\int_{-\infty}^{\infty}S_X(f)exp(j2\pi f\tau)df SX(f)=RX(τ)exp(j2πfτ)dτRX(τ)=SX(f)exp(j2πfτ)df

  • 性质1 S x ( 0 ) = ∫ − ∞ ∞ R X ( τ ) d τ S_x(0)=\int_{-\infty}^{\infty}R_X(\tau)d\tau Sx(0)=RX(τ)dτ
  • 性质2 E [ X 2 ( t ) ] = R X ( 0 ) = ∫ − ∞ ∞ S X ( f ) d f E[X^2(t)]=R_X(0)=\int_{-\infty}^{\infty}S_X(f)df E[X2(t)]=RX(0)=SX(f)df
  • 性质3 S X ( f ) ≥ 0 S_X(f)\ge 0 SX(f)0
  • 性质4 S X ( f ) = S X ( − f ) S_X(f)=S_X(-f) SX(f)=SX(f)
  • 性质5 功率谱密度标准化后,具有概率密度函数的性质 p X ( f ) = S X ( f ) ∫ − ∞ ∞ S X ( f ) d f p_X(f)=\frac{S_X(f)}{\int_{-\infty}^{\infty}S_X(f)df} pX(f)=SX(f)dfSX(f)

输入和输出随机过程功率谱密度的关系
S Y ( f ) = ∣ H ( f ) ∣ 2 S X ( f ) S_Y(f)=|H(f)|^2S_X(f) SY(f)=H(f)2SX(f)

高斯过程

Y = ∫ 0 T g ( t ) X ( t ) d t Y=\int_0^Tg(t)X(t)dt Y=0Tg(t)X(t)dt

如果加权函数 g ( t ) g(t) g(t)使得随机变量 Y Y Y的均方值有限,并且对于每一个 g ( t ) g(t) g(t),随机变量 Y Y Y都是高斯分布的,即 X ( t ) X(t) X(t)的所有线性泛函都是高斯随机变量,则称 X ( t ) X(t) X(t)为高斯过程。

如果概率密度函数有如下形式,则称随机变量 Y Y Y是高斯分布的: f Y ( y ) = 1 2 π σ Y e x p [ − ( y − μ Y ) 2 2 σ Y 2 ] f_Y(y)=\frac1 {\sqrt{2\pi}\sigma_Y}exp[-\frac{(y-\mu_Y)^2}{2\sigma^2_Y}] fY(y)=2π σY1exp[2σY2(yμY)2]高斯过程的优点:

  1. 易于分析
  2. 适用于物理现象所产生的随机过程

中心极限定理
X i ( i = 1 , 2 , . . . , N ) X_i(i=1,2,...,N) Xi(i=1,2,...,N)为一组满足如下要求的随机变量:

  1. X i X_i Xi是统计独立的
  2. X i X_i Xi具有相同的概率分布,均值为 μ X \mu_X μX,方差为 σ X 2 \sigma^2_X σX2

这些 X i X_i Xi可以组成一组独立同分布的随机变量。
Y i = 1 σ X ( X i − μ X ) i = 1 , 2 , . . . , N Y_i=\frac 1 {\sigma_X}(X_i-\mu_X)\quad i=1,2,...,N Yi=σX1(XiμX)i=1,2,...,N于是有 E ( Y i ) = 0 v a r [ Y I ] = 1 \begin{aligned}E(Y_i)&=0\\ var[Y_I]&=1\end{aligned} E(Yi)var[YI]=0=1定义随机变量 V N = 1 N ∑ i = 1 N Y i V_N=\frac1 {\sqrt N}\sum_{i=1}^{N}Y_i VN=N 1i=1NYi
中心极限定理表明, V N V_N VN的概率分布在 N N N趋于无穷时的极限逼近于标准高斯分布 N ( 0 , 1 ) \mathcal N(0,1) N(0,1)

高斯过程的近似

  • 性质1 高斯过程 X ( t ) X(t) X(t)通过一个稳定线性滤波器,那么滤波器的输出 Y ( t ) Y(t) Y(t)也是高斯型的,其中 Y ( t ) = ∫ 0 T h ( t − τ ) X ( τ ) d τ 0 ≤ t < ∞ Y(t)=\int_0^Th(t-\tau)X(\tau)d\tau\quad 0\le t\lt \infty Y(t)=0Th(tτ)X(τ)dτ0t<
  • 性质2 略
  • 性质3 如果高斯过程是平稳的,那么也一定是严平稳的
  • 性质4 略

噪声

散弹噪声
X ( t ) = ∑ k = − ∞ ∞ h ( t − τ k ) X(t)=\sum_{k=-\infty}^\infty h(t-\tau_k) X(t)=k=h(tτk)其中 h ( t − τ k ) h(t-\tau_k) h(tτk) τ k \tau_k τk时刻产生的电流脉冲,则 X ( t ) X(t) X(t)为一个平稳随机过程,称为散弹噪声。
热噪声

白噪声
样本函数为 w ( t ) w(t) w(t)的白噪声的功率谱密度为 S W ( f ) = N 0 2 S_W(f)=\frac{N_0}2 SW(f)=2N0
只要系统输入端的噪声带宽比系统带宽大得多,就可以认为系统是白噪声的。
窄带噪声
通信系统接收机的预处理装置采用窄带滤波器,其带宽正好足够使接收信号的调制成分无失真地通过,同时又能限制多余的噪声通过。滤波器输出端的噪声称为窄带噪声。
在这里插入图片描述

基于同相和正交分量地窄带噪声表示法
考虑带宽为 2 B 2B 2B,中心频率为 f c f_c fc的窄带噪声 n ( t ) n(t) n(t)
n ( t ) = n I ( t ) c o s ( 2 π f c t ) − n Q ( t ) s i n ( 2 π f c t ) n(t)=n_I(t)cos(2\pi f_ct)-n_Q(t)sin(2\pi f_ct) n(t)=nI(t)cos(2πfct)nQ(t)sin(2πfct)其中 n I ( t ) n_I(t) nI(t) n ( t ) n(t) n(t)的同相分量, n Q ( t ) n_Q(t) nQ(t) n ( t ) n(t) n(t)的正交分量。
在这里插入图片描述
窄带噪声的同相和正交分量具有如下特性:

  1. n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)具有零均值

  2. 如果 n ( t ) n(t) n(t)是高斯型的,则 n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)也是高斯型的

  3. 如果 n ( t ) n(t) n(t)是平稳的,则 n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)也是平稳的

  4. n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)具有相同的功率谱密度 S N I ( f ) = S N Q ( f ) = f ( n ) = { S N ( f − f c ) + S N ( f + f c ) , if  − B ≤ f ≤ B 0 , 其他  S_{N_I}(f)=S_{N_Q}(f)= f(n)= \begin{cases} S_N(f-f_c)+S_N(f+f_c),&\text{if } -B\le f\le B\\ 0,&\text{其他 } \end{cases} SNI(f)=SNQ(f)=f(n)={SN(ffc)+SN(f+fc),0,if BfB其他 其中,假设 S N ( f ) S_N(f) SN(f)占用了频率间隔 f c − B ≤ ∣ f ∣ ≤ f c + B f_c-B\le |f|\le f_c+B fcBffc+B f c > B f_c\gt B fc>B

  5. n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)具有相同的方差,其值等于 n ( t ) n(t) n(t)的方差

  6. n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)的互功率谱密度为纯虚函数 S N I N Q ( f ) = − S N Q N I ( f ) = { j [ S N ( f + f c ) − S N ( f − f c ) ] , if  − B ≤ f ≤ B 0 , 其他  \begin{aligned}S_{N_IN_Q}(f)&=-S_{N_QN_I}(f)\\&=\begin{cases} j[S_N(f+f_c)-S_N(f-f_c)],&\text{if } -B\le f\le B\\ 0,&\text{其他 } \end{cases}\end{aligned} SNINQ(f)=SNQNI(f)={j[SN(f+fc)SN(ffc)],0,if BfB其他 

  7. 假定 n ( t ) n(t) n(t)是高斯型的,并且其功率谱密度 S N ( t ) S_N(t) SN(t)关于中心频率 f c f_c fc对称,那么 n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)就是统计独立的

基于包络和相位的窄带噪声表示法
n ( t ) = r ( t ) c o s [ 2 π f c t + ψ ( t ) ] n(t)=r(t)cos[2\pi f_ct+\psi(t)] n(t)=r(t)cos[2πfct+ψ(t)]
其中,幅度和相位分别为 r ( t ) = [ n I 2 ( t ) + n Q 2 ( t ) ] 1 2 ψ ( t ) = t a n − 1 [ n Q ( t ) n I ( t ) ] \begin{aligned}r(t)&=[n_I^2(t)+n_Q^2(t)]^{\frac1 2}\\\psi(t)&=tan^{-1}[\frac{n_Q(t)}{n_I(t)}]\end{aligned} r(t)ψ(t)=[nI2(t)+nQ2(t)]21=tan1[nI(t)nQ(t)] N I N_I NI N Q N_Q NQ分别表示通过观测由样本函数 n I ( t ) n_I(t) nI(t) n Q ( t ) n_Q(t) nQ(t)表示的随机过程所得到的随机变量。 N I N_I NI N Q N_Q NQ为独立的高斯随机变量,其均值为零,方差为 σ 2 \sigma^2 σ2,于是联合概率密度函数为 f N I , N Q ( n I , n Q ) = 1 2 π σ 2 e x p ( − n I 2 + n Q 2 2 σ 2 ) d n I d n Q f_{N_I,N_Q}(n_I,n_Q)=\frac1{2\pi \sigma^2}exp(-\frac{n_I^2+n_Q^2}{2\sigma^2})dn_Idn_Q fNI,NQ(nI,nQ)=2πσ21exp(2σ2nI2+nQ2)dnIdnQ定义变换: n I = r c o s ψ n Q = r s i n ψ \begin{aligned}n_I&=rcos\psi\\n_Q&=rsin\psi\end{aligned} nInQ=rcosψ=rsinψ从极限意义上,下图中两个阴影面积等同,即 d n I d n Q = r d r d ψ dn_Idn_Q=rdrd\psi dnIdnQ=rdrdψ在这里插入图片描述
R R R Ψ \Psi Ψ分别表示通过观测由样本函数 r ( t ) r(t) r(t) ψ ( t ) \psi(t) ψ(t)表示的随机过程所得到的随机变量,则随机变量 R R R Ψ \Psi Ψ落在阴影部分的概率为 r 2 π σ 2 e x p ( − r 2 2 σ 2 ) d r d ψ \frac r {2\pi \sigma^2}exp(-\frac{r^2}{2\sigma^2})drd\psi 2πσ2rexp(2σ2r2)drdψ R R R Ψ \Psi Ψ的联合概率密度为 f R , Ψ ( r , ψ ) = r 2 π σ 2 e x p ( − r 2 2 σ 2 ) f_{R,\Psi}(r,\psi)=\frac r {2\pi \sigma^2}exp(-\frac{r^2}{2\sigma^2}) fR,Ψ(r,ψ)=2πσ2rexp(2σ2r2)其中概率密度函数与角度 Ψ \Psi Ψ无关,说明随机变量 R R R Ψ \Psi Ψ是统计独立的。可将 f R , Ψ ( r , ψ ) f_{R,\Psi}(r,\psi) fR,Ψ(r,ψ)表示为 f R ( r ) f_{R}(r) fR(r) f Ψ ( ψ ) f_{\Psi}(\psi) fΨ(ψ)的乘积。 f Ψ ( ψ ) = { 1 2 π , 0 ≤ ψ ≤ 2 π 0 , 其他 f R ( r ) = { r σ 2 e x p ( − r 2 2 σ 2 ) , r ≥ 0 0 , 其他 式(1) \begin{aligned}&f_{\Psi}(\psi)=\begin{cases}\frac1 {2\pi},&0\le\psi\le2\pi\\0,&\text{其他}\end{cases}\\&f_{R}(r)=\begin{cases}\frac r { \sigma^2}exp(-\frac{r^2}{2\sigma^2}),&r\ge0\\0,&\text{其他}\end{cases}\quad \text{式(1)}\end{aligned} fΨ(ψ)={2π1,0,0ψ2π其他fR(r)={σ2rexp(2σ2r2),0,r0其他式(1具有式(1)所示的概率密度的随机变量称为是瑞利分布
v = r σ f V ( v ) = σ f R ( r ) \begin {aligned}v&=\frac r{\sigma}\\f_V(v)&=\sigma f_R(r)\end{aligned} vfV(v)=σr=σfR(r)得到瑞利分布的标准化形式: f V ( v ) = { v e x p ( − v 2 2 ) , v ≥ 0 0 , 其他 f_{V}(v)=\begin{cases}vexp(-\frac{v^2}{2}),&v\ge0\\0,&\text{其他}\end{cases} fV(v)={vexp(2v2),0,v0其他在这里插入图片描述

正弦信号加窄带噪声
正弦信号上叠加噪声的一个样本函数可表示为 x ( t ) = A c o s ( 2 π f c t ) + n ( t ) = n I ′ ( t ) c o s ( 2 π f c t ) − n Q ( t ) s i n ( 2 π f c t ) \begin{aligned}x(t)&=Acos(2\pi f_ct)+n(t)\\&=n_I'(t)cos(2\pi f_ct)-n_Q(t)sin(2\pi f_ct)\end{aligned} x(t)=Acos(2πfct)+n(t)=nI(t)cos(2πfct)nQ(t)sin(2πfct)其中, n I ′ ( t ) = A + n I ( t ) n_I'(t)=A+n_I(t) nI(t)=A+nI(t)假设 n ( t ) n(t) n(t)是均值为零,方差为 σ 2 \sigma^2 σ2的高斯过程,则

  1. n I ′ ( t ) n_I'(t) nI(t) n Q ( t ) n_Q(t) nQ(t)为高斯型,并且是统计独立的
  2. n I ′ ( t ) n_I'(t) nI(t)的均值为 A A A n Q ( t ) n_Q(t) nQ(t)的均值为零
  3. n I ′ ( t ) n_I'(t) nI(t) n Q ( t ) n_Q(t) nQ(t)的方差都是 σ 2 \sigma^2 σ2

随机变量 N I ′ N'_I NI N Q N_Q NQ的联合密度函数为
f N I ′ , N Q ( n I ′ , n Q ) = 1 2 π σ 2 e x p ( − ( n I ′ − A ) 2 + n Q 2 2 σ 2 ) f_{N'_I,N_Q}(n'_I,n_Q)=\frac1{2\pi \sigma^2}exp(-\frac{(n'_I-A)^2+n_Q^2}{2\sigma^2}) fNI,NQ(nI,nQ)=2πσ21exp(2σ2(nIA)2+nQ2) r ( t ) r(t) r(t)表示 x ( t ) x(t) x(t)的包络, ψ ( t ) \psi(t) ψ(t)表示其相位,则 r ( t ) = { [ n I ′ ( t ) ] 2 + n Q 2 ( t ) } 1 2 ψ ( t ) = t a n − 1 [ n Q ( t ) n I ′ ( t ) ] \begin{aligned}r(t)&=\lbrace{[n'_I(t)]^2+n_Q^2(t)\rbrace}^{\frac1 2}\\\psi(t)&=tan^{-1}[\frac{n_Q(t)}{n'_I(t)}]\end{aligned} r(t)ψ(t)={[nI(t)]2+nQ2(t)}21=tan1[nI(t)nQ(t)]由此得到 f R , Ψ ( r , ψ ) = r 2 π σ 2 e x p ( − r 2 + A 2 − 2 A r c o s ψ 2 σ 2 ) f_{R,\Psi}(r,\psi)=\frac r {2\pi \sigma^2}exp(-\frac{r^2+A^2-2Arcos\psi}{2\sigma^2}) fR,Ψ(r,ψ)=2πσ2rexp(2σ2r2+A22Arcosψ)可看出,随机变量 R R R Ψ \Psi Ψ是相关的。
f R ( r ) = ∫ 0 2 π f R , Ψ ( r , ψ ) d ψ = r σ 2 e x p ( − r 2 + A 2 2 σ 2 ) I 0 ( A r σ 2 ) \begin{aligned}f_R(r)&=\int_0^{2\pi}f_{R,\Psi}(r,\psi)d\psi\\&=\frac r{\sigma^2}exp(-\frac{r^2+A^2}{2\sigma^2})I_0(\frac{Ar}{\sigma^2})\end{aligned} fR(r)=02πfR,Ψ(r,ψ)dψ=σ2rexp(2σ2r2+A2)I0(σ2Ar)其中,根据第一类零阶修正贝塞尔函数的积分式 I 0 ( x ) = 1 2 π ∫ 0 2 π e x p ( x c o s ψ ) d ψ I_0(x)=\frac1{2\pi}\int_0^{2\pi}exp(xcos\psi)d\psi I0(x)=2π102πexp(xcosψ)dψ v = r σ a = A σ f V ( v ) = σ f R ( r ) \begin{aligned}v&=\frac r \sigma\\a&=\frac A \sigma\\f_V(v)&=\sigma f_R(r)\end{aligned} vafV(v)=σr=σA=σfR(r)
可得到莱斯分布的标准化形式: f V ( v ) = v e x p ( − v 2 + a 2 2 ) I 0 ( a v ) f_V(v)=vexp(-\frac{v^2+a^2}{2})I_0(av) fV(v)=vexp(2v2+a2)I0(av)

  1. a = 0 a=0 a=0时,莱斯分布退化为瑞利分布
  2. a a a足够大时,包络分布近似于围绕 v = a v=a v=a的高斯分布, σ \sigma σ为噪声 n ( t ) n(t) n(t)平均功率的平方根

在这里插入图片描述

连续波调制

幅度调制

s ( t ) = A c [ 1 + k a m ( t ) ] c o s ( 2 π f c t ) s(t)=A_c[1+k_am(t)]cos(2\pi f_ct) s(t)=Ac[1+kam(t)]cos(2πfct)
条件:

  1. ∣ k a m ( t ) ∣ < 1 for all t |k_am(t)|<1 \quad \text{for all t} kam(t)<1for all t
  2. f c ≫ W f_c \gg W fcW ,其中, W W W m ( t ) m(t) m(t)的最高频率分量,称为信号带宽。
    在这里插入图片描述

幅度调制的优缺点
优点: 实现方式简单
缺点: 浪费带宽和功率

线性调制方案

s ( t ) = s I ( t ) c o s ( 2 π f c t ) − s Q ( t ) s i n ( 2 π f c t ) s(t)=s_I(t)cos(2\pi f_ct)-s_Q(t)sin(2\pi f_ct) s(t)=sI(t)cos(2πfct)sQ(t)sin(2πfct)
线性调制的三种分类:

  1. D S B − S C ( D o u b l e   s i d e b a n d − s u p p r e s s e d   c a r r i e r ) DSB-SC(Double\ sideband-suppressed\ carrier) DSBSC(Double sidebandsuppressed carrier):只传送上边带和下边带
  2. S S B ( S i n g l e   s i d e b a n d   m o d u l a t i o n ) SSB(Single\ sideband\ modulation) SSB(Single sideband modulation):只传送上边带或下边带
  3. V S B ( V e s t i g i a l   s i d e b a n d ) VSB(Vestigial\ sideband) VSB(Vestigial sideband):只传送某一边带的残余和另一边带相应修改的部分

在这里插入图片描述
D S B − S C DSB-SC DSBSC
s ( t ) = A c m ( t ) c o s ( 2 π f c t ) s(t)=A_cm(t)cos(2\pi f_ct) s(t)=Acm(t)cos(2πfct)
在这里插入图片描述
相干检测
在这里插入图片描述
相干检测是指本地振荡器信号和乘积调制器中 s ( t ) s(t) s(t)所用的载波 c ( t ) c(t) c(t)在频率和相位上是完全相干或同步的。
v ( t ) = A c ′ c o s ( 2 π f c t + ϕ ) s ( t ) = A c A c ′ c o s ( 2 π f c t ) c o s ( 2 π f c t + ϕ ) m ( t ) = 1 2 A c A c ′ c o s ( 4 π f c t ϕ ) m ( t ) + 1 2 A c A c ′ c o s ϕ m ( t ) \begin{aligned}v(t)&=A'_ccos(2\pi f_ct+\phi)s(t)\\&=A_cA'_ccos(2\pi f_ct)cos(2\pi f_ct+\phi)m(t)\\&=\frac 1 2 A_cA'_ccos(4\pi f_ct_\phi)m(t)+\frac 1 2 A_cA'_ccos\phi m(t)\end{aligned} v(t)=Accos(2πfct+ϕ)s(t)=AcAccos(2πfct)cos(2πfct+ϕ)m(t)=21AcAccos(4πfctϕ)m(t)+21AcAccosϕm(t)

在这里插入图片描述
科斯塔接收机
在这里插入图片描述
正交载波复用(QAM)

在这里插入图片描述
s ( t ) = A c m 1 ( t ) c o s ( 2 π f c t ) + A c m 2 ( t ) s i n ( 2 π f c t ) s(t)=A_cm_1(t)cos(2\pi f_ct)+A_cm_2(t)sin(2\pi f_ct) s(t)=Acm1(t)cos(2πfct)+Acm2(t)sin(2πfct)

SSB调制
在这里插入图片描述
VSB调制
在这里插入图片描述

  1. f c f_c fc等距离的任意两个频率点的幅度相应 ∣ H ( f ) ∣ |H(f)| H(f)之和为1
  2. 相位相应 a r g ( H ( f ) arg(H(f) arg(H(f)是线性的,即 H ( f − f c ) + H ( f + f c ) = 1 − W ≤ f c ≤ W H(f-f_c)+H(f+f_c)=1\quad -W\le f_c\le W H(ffc)+H(f+fc)=1WfcW

传输带宽 B τ = W + f v B_\tau =W+f_v Bτ=W+fv,其中 W W W为消息带宽, f v f_v fv为残留边带宽度

VSB已调信号的时域表达式为 s ( t ) = 1 2 A c m ( t ) c o s ( 2 π f c t ) ± 1 2 A c m ′ ( t ) s i n ( 2 π f c t ) s(t)=\frac 1 2 A_cm(t)cos(2\pi f_ct)\pm \frac 1 2 A_cm'(t)sin(2\pi f_ct) s(t)=21Acm(t)cos(2πfct)±21Acm(t)sin(2πfct)发送上边带的残留部分时取加号,发送下边带的残留部分时取减号。
将消息信号 m ( t ) m(t) m(t)通过频率响应 H Q ( f ) H_Q(f) HQ(f)得到 m ′ ( t ) m'(t) m(t),其中 H Q ( f ) = j [ H ( f − f c ) − H ( f + f c ) ] − W ≤ f ≤ W H_Q(f)=j[H(f-f_c)-H(f+f_c)]\quad -W\le f\le W HQ(f)=j[H(ffc)H(f+fc)]WfW
在这里插入图片描述

频率搬移

频分复用

角度调制

s ( t ) = A c c o s [ θ i ( t ) ] s(t)=A_ccos[\theta _i(t)] s(t)=Accos[θi(t)]
瞬时频率 f i ( t ) = lim ⁡ Δ t → 0 f Δ t ( t ) = lim ⁡ Δ t → 0 [ θ i ( t + Δ t ) − θ i ( t ) 2 π Δ t ] = 1 2 π d θ i ( t ) d t \begin{aligned}f_i(t)&=\lim_{\Delta t \to 0}f_{\Delta t}(t)\\&=\lim_{\Delta t \to 0}[\frac {\theta_i(t+\Delta t)-\theta_i(t)}{2\pi \Delta t}]\\&=\frac 1 {2\pi}\frac {d\theta_i(t)}{dt}\end{aligned} fi(t)=Δt0limfΔt(t)=Δt0lim[2πΔtθi(t+Δt)θi(t)]=2π1dtdθi(t)角度调制信号可理解为一个旋转矢量。对未调载波, θ i ( t ) = 2 π f c t + ϕ c \theta_i(t)=2\pi f_ct+\phi_c θi(t)=2πfct+ϕc
两种常用的角度调制方式:

  • 相位调制(PM)
    θ i ( t ) = 2 π f c t + k p m ( t ) s ( t ) = A c c o s [ 2 π f c t + k p m ( t ) ] \theta_i(t)=2\pi f_ct+k_pm(t)\\s(t)=A_ccos[2\pi f_ct+k_pm(t)] θi(t)=2πfct+kpm(t)s(t)=Accos[2πfct+kpm(t)]
  • 频率调制(FM)
    f i ( t ) = f c + k f m ( t ) θ i ( t ) = ∫ 0 t f i ( τ ) d τ s ( t ) = A c c o s [ 2 π f c t + 2 π k f ∫ 0 t m ( τ ) d τ ] f_i(t)=f_c+k_fm(t)\\\theta_i(t)=\int_0^tf_i(\tau)d\tau \\s(t)=A_ccos[2\pi f_ct+2\pi k_f\int_0^tm(\tau)d\tau] fi(t)=fc+kfm(t)θi(t)=0tfi(τ)dτs(t)=Accos[2πfct+2πkf0tm(τ)dτ]

频率调制

m ( t ) = A m c o s ( 2 π f m t ) m(t)=A_mcos(2\pi f_mt) m(t)=Amcos(2πfmt)
瞬时频率 f i ( t ) = f c + k f A m c o s ( 2 π f m t ) = f c + Δ f c o s ( 2 π f m t ) \begin{aligned}f_i(t)&=f_c+k_fA_mcos(2\pi f_mt)\\&=f_c+\Delta fcos(2\pi f_mt)\end{aligned} fi(t)=fc+kfAmcos(2πfmt)=fc+Δfcos(2πfmt)其中, Δ f = k f A m \Delta f=k_fA_m Δf=kfAm称为频偏
θ i ( t ) = ∫ 0 t f i ( τ ) d τ = 2 π f c t + Δ f f m s i n ( 2 π f m t ) \begin{aligned}\theta_i(t)&=\int_0^tf_i(\tau)d\tau\\&=2\pi f_ct+\frac {\Delta f}{f_m}sin(2\pi f_mt)\end{aligned} θi(t)=0tfi(τ)dτ=2πfct+fmΔfsin(2πfmt)
FM的调制指数 β = Δ f f m \beta=\frac{\Delta f}{f_m} β=fmΔf β \beta β表示FM信号的相偏,单位为弧度。
s ( t ) = A c c o s [ 2 π f c t + β s i n ( 2 π f m t ) ] s(t)=A_ccos[2\pi f_ct+\beta sin(2\pi f_mt)] s(t)=Accos[2πfct+βsin(2πfmt)]

  • 窄带FM: β < 1 r a d \beta<1\quad rad β<1rad
  • 宽带FM: β > 1 r a d \beta>1\quad rad β>1rad

窄带FM
s ( t ) = A c c o s ( 2 π f c t ) c o s [ β s i n ( 2 π f m t ) ] − A c s i n ( 2 π f c t ) s i n [ β s i n ( 2 π f m t ) ] ≃ A c c o s ( 2 π f c t ) − β A c s i n ( 2 π f c t ) s i n ( 2 π f m t ) \begin{aligned}s(t)&=A_ccos(2\pi f_ct)cos[\beta sin(2\pi f_mt)]-A_csin(2\pi f_ct)sin[\beta sin(2\pi f_mt)]\\&\simeq A_ccos(2\pi f_ct)-\beta A_csin(2\pi f_ct)sin(2\pi f_mt)\end{aligned} s(t)=Accos(2πfct)cos[βsin(2πfmt)]Acsin(2πfct)sin[βsin(2πfmt)]Accos(2πfct)βAcsin(2πfct)sin(2πfmt)
在这里插入图片描述
β ≤ 0.3 r a d \beta \le 0.3 rad β0.3rad时,可有效消除残留AM和谐波PM造成的影响。
s ( t ) ≃ A c c o s ( 2 π f c t ) + 1 2 β A c { c o s [ 2 π ( f c + f m ) t ] − c o s [ 2 π ( f c − f m ) t ] } s(t)\simeq A_ccos(2\pi f_ct)+\frac 1 2\beta A_c\{cos[2\pi (f_c+f_m)t]-cos[2\pi (f_c-f_m)t]\} s(t)Accos(2πfct)+21βAc{cos[2π(fc+fm)t]cos[2π(fcfm)t]}
s A M ( t ) = A c c o s ( 2 π f c t ) + 1 2 μ A c { c o s [ 2 π ( f c + f m ) t ] + c o s [ 2 π ( f c − f m ) t ] } s_{AM}(t)= A_ccos(2\pi f_ct)+\frac 1 2\mu A_c\{cos[2\pi (f_c+f_m)t]+cos[2\pi (f_c-f_m)t]\} sAM(t)=Accos(2πfct)+21μAc{cos[2π(fc+fm)t]+cos[2π(fcfm)t]}
与AM信号相同,窄带FM信号的传输带宽也为 2 f m 2f_m 2fm
在这里插入图片描述
宽带FM
对FM信号
s ( t ) = A c c o s [ 2 π f c t + β s i n ( 2 π f m t ) ] s(t)=A_ccos[2\pi f_ct+\beta sin(2\pi f_mt)] s(t)=Accos[2πfct+βsin(2πfmt)]考虑任意大小的 β \beta β
假设与FM信号的带宽相比, f c f_c fc足够大,则
s ( t ) = R e [ A c e x p ( j 2 π f c t + j β s i n ( 2 π f m t ) ) ] = R e [ s ~ ( t ) e x p ( j 2 π f c t ) ] \begin{aligned}s(t)&=Re[A_cexp(j2\pi f_ct+j\beta sin(2\pi f_mt))]\\&=Re[\tilde{s}(t)exp(j2\pi f_ct)]\end{aligned} s(t)=Re[Acexp(j2πfct+jβsin(2πfmt))]=Re[s~(t)exp(j2πfct)]其中, s ~ ( t ) = A c e x p [ j β s i n ( 2 π f m t ) ] \tilde{s}(t)=A_cexp[j\beta sin(2\pi f_mt)] s~(t)=Acexp[jβsin(2πfmt)]这样, s ~ ( t ) \tilde{s}(t) s~(t)就是一个周期信号,则 s ~ ( t ) = ∑ n = − ∞ ∞ c n e x p ( j 2 π n f m t ) \tilde{s}(t)=\sum_{n=-\infty}^{\infty}c_nexp(j2\pi nf_mt) s~(t)=n=cnexp(j2πnfmt)其中, c n = f m ∫ − 1 2 f m 1 2 f m s ~ ( t ) e x p ( − j 2 π n f m t ) d t = f m A c ∫ − 1 2 f m 1 2 f m e x p ( j β s i n ( 2 π f m t ) − j 2 π n f m t ) d t \begin{aligned}c_n&=f_m\int_{-\frac 1 2 f_m}^{\frac 1 2 f_m}\tilde{s}(t)exp(-j2\pi nf_mt)dt\\&=f_mA_c\int_{-\frac 1 2 f_m}^{\frac 1 2 f_m}exp(j\beta sin(2\pi f_mt)-j2\pi nf_mt)dt\end {aligned} cn=fm21fm21fms~(t)exp(j2πnfmt)dt=fmAc21fm21fmexp(jβsin(2πfmt)j2πnfmt)dt x = 2 π f m t x=2\pi f_mt x=2πfmt,则 c n = A c 2 π ∫ − π π e x p [ j ( β s i n x − n x ) ] d x c_n=\frac {A_c}{2\pi}\int_{-\pi}^{\pi}exp[j(\beta sinx-nx)]dx cn=2πAcππexp[j(βsinxnx)]dx第一类贝塞尔函数 J n ( β ) = 1 2 π ∫ − π π e x p [ j ( β s i n x − n x ) ] d x J_n(\beta)=\frac {1}{2\pi}\int_{-\pi}^{\pi}exp[j(\beta sinx-nx)]dx Jn(β)=2π1ππexp[j(βsinxnx)]dx因此, c n = A c J n ( β ) c_n=A_cJ_n(\beta) cn=AcJn(β)则, s ( t ) = A c ∑ n = − ∞ ∞ J n ( β ) c o s [ 2 π ( f c + n f m ) t ] s(t)=A_c\sum_{n=-\infty}^{\infty}J_n(\beta)cos[2\pi (f_c+nf_m)t] s(t)=Acn=Jn(β)cos[2π(fc+nfm)t] S ( f ) = A c 2 ∑ n = − ∞ ∞ J n ( β ) [ δ ( f − f c − n f m ) + δ ( f + f c + n f m ) ] S(f)=\frac {A_c}{2}\sum_{n=-\infty}^{\infty}J_n(\beta)[\delta(f-f_c-nf_m)+\delta(f+f_c+nf_m)] S(f)=2Acn=Jn(β)[δ(ffcnfm)+δ(f+fc+nfm)]
在这里插入图片描述
贝塞尔函数的性质:

  1. J n ( β ) = ( − 1 ) n J − n ( β ) J_n(\beta)=(-1)^nJ_{-n}(\beta) Jn(β)=(1)nJn(β)
  2. β \beta β很小时,有 { J 0 ( β ) ≈ 1 J 1 ( β ) ≈ β 2 J n ( β ) ≈ 0 , n > 2 ∑ n = − ∞ ∞ J n 2 ( β ) = 1 \begin{cases} J_0(\beta )\approx 1\\ J_1(\beta)\approx\frac \beta 2\\J_n(\beta)\approx0,n\gt2 \end{cases}\\\sum_{n=-\infty}^{\infty}J_n^2(\beta)=1 J0(β)1J1(β)2βJn(β)0,n>2n=Jn2(β)=1

结论如下:

  1. FM信号的频谱含有载波分量和无穷多个边频分量 f m , 2 f m , . . . , f_m,2f_m,..., fm,2fm,...,边频分量以载频为中心对称分布。而AM系统中只产生一对边频
  2. β < 1 \beta \lt1 β<1的特殊情况,FM信号由载频和位于 f c ± f m f_c\pm f_m fc±fm处的一对边频组成,相当于窄带FM
  3. 载波分量的幅度随 J 0 ( β ) J_0(\beta) J0(β)变化,即FM信号中载波分量的幅度由调制指数 β \beta β确定,这个性质的含义是:FM信号是恒包络的。因此,FM信号在 1 Ω 1\Omega 1Ω电阻上产生的功率为恒定值:
    P = 1 2 A c 2 ∑ n = − ∞ ∞ J n 2 ( β ) = 1 2 A c 2 P=\frac 1 2 A_c^2\sum_{n=-\infty}^{\infty}J_n^2(\beta)=\frac 1 2 A_c^2 P=21Ac2n=Jn2(β)=21Ac2

FM信号的传输带宽
对频率为 f m f_m fm的单音频调制信号产生的FM信号的传输带宽可定义为如下近似规则: B T ≈ 2 Δ f + 2 f m = 2 Δ f ( 1 + 1 β ) B_T\approx 2\Delta f+2f_m=2\Delta f(1+\frac 1 \beta) BT2Δf+2fm=2Δf(1+β1)该经验关系称为卡逊准则。
另一种定义带宽的方法,要求边频的幅度超过未调载波幅度的1%,则传输带宽为 2 n m a x f m 2n_{max}f_m 2nmaxfm n m a x n_{max} nmax为满足 ∣ J n ( β ) > 0.01 ∣ |J_n(\beta)\gt0.01| Jn(β)>0.01的最大整数 n n n
在这里插入图片描述
对于更为普遍的最高频率分量为W的任意调制信号 m ( t ) m(t) m(t)将频偏 Δ f \Delta f Δf与W的比值定义为偏移率D,其中 Δ f \Delta f Δf对应于调制信号 m ( t ) m(t) m(t)的最大可能幅度,用D代替 β \beta β,w代替 f m f_m fm,运用上面两种方法。从实际看,卡逊准则得到的带宽小于FM系统所需要的带宽,由标准曲线得到的带宽为保守值,因此,实际应用中可以接受的传输带宽位于这两个值之间。

FM信号的产生
间接FM在这里插入图片描述
FM信号的解调
使用鉴频器的直接解调方法
在这里插入图片描述
H 1 ( f ) = { j 2 π a ( f − f c + B T 2 ) , f c − B T 2 ≤ f ≤ f c + B T 2 j 2 π a ( f + f c − B T 2 ) , − f c − B T 2 ≤ f ≤ − f c + B T 2 0 , 其他 ∑ n = − ∞ ∞ J n 2 ( β ) = 1 H_1(f)= \begin{cases} j2\pi a(f-f_c+\frac {B_T} 2),\quad f_c-\frac {B_T} 2\le f\le f_c+\frac {B_T} 2\\ j2\pi a(f+f_c-\frac {B_T} 2),\quad -f_c-\frac {B_T} 2\le f\le -f_c+\frac {B_T} 2\\0,\quad \text{其他} \end{cases}\\\sum_{n=-\infty}^{\infty}J_n^2(\beta)=1 H1(f)=j2πa(ffc+2BT),fc2BTffc+2BTj2πa(f+fc2BT),fc2BTffc+2BT0,其他n=Jn2(β)=1
可用频率响应为 H ~ 1 ( f ) \tilde{H}_1(f) H~1(f)的低通滤波器代替频率响应为 H 1 ( f ) H_1(f) H1(f)的带通滤波器:

H ~ 1 ( f − f c ) = 2 H 1 ( f ) , f > 0 \tilde{H}_1(f-f_c)=2H_1(f),\quad f\gt0 H~1(ffc)=2H1(f),f>0
H ~ 1 ( f ) = { j 4 π a ( f + B T 2 ) , − B T 2 ≤ f ≤ B T 2 0 , 其他 \tilde{H}_1(f)=\begin{cases}j4\pi a(f+\frac{B_T} 2),&-\frac{B_T} 2\le f\le \frac{B_T} 2\\0,&\text{其他}\end{cases} H~1(f)={j4πa(f+2BT),0,2BTf2BT其他
由前面知道, s ( t ) = A c c o s [ 2 π f c t + 2 π k f ∫ 0 t m ( τ ) d τ ] s(t)=A_ccos[2\pi f_ct+2\pi k_f\int_0^tm(\tau)d\tau] s(t)=Accos[2πfct+2πkf0tm(τ)dτ] s ( t ) s(t) s(t)的复包络 s ~ ( t ) = A c e x p [ j 2 π k f ∫ 0 t m ( τ ) d τ ] \tilde{s}(t)=A_cexp[j2\pi k_f\int_0^tm(\tau)d\tau] s~(t)=Acexp[j2πkf0tm(τ)dτ] S ~ 1 ( f ) = 1 2 H ~ 1 ( f ) S ~ ( f ) = { j 2 π a ( f + B T 2 ) S ~ ( f ) , − B T 2 ≤ f ≤ B T 2 0 , 其他 \begin{aligned}\tilde{S}_1(f)&=\frac 1 2 \tilde{H}_1(f)\tilde{S}(f)\\&=\begin{cases}j2\pi a(f+\frac{B_T} 2) \tilde{S}(f),&-\frac{B_T} 2\le f\le \frac{B_T} 2\\0,&\text{其他}\end{cases}\end{aligned} S~1(f)=21H~1(f)S~(f)={j2πa(f+2BT)S~(f),0,2BTf2BT其他
s ~ 1 ( t ) = a [ d s ~ ( t ) d t + j π B T s ~ ( t ) ] = j π B T a A c [ 1 + 2 k f B T m ( t ) ] e x p [ j 2 π k f ∫ 0 t m ( τ ) d τ ] \begin{aligned}\tilde{s}_1(t)&=a[\frac{d\tilde{s}(t)}{dt}+j\pi B_T\tilde{s}(t)]\\&=j\pi B_TaA_c[1+\frac{2k_f} {B_T}m(t)]exp[j2\pi k_f\int_0^tm(\tau)d\tau]\end{aligned} s~1(t)=a[dtds~(t)+jπBTs~(t)]=jπBTaAc[1+BT2kfm(t)]exp[j2πkf0tm(τ)dτ]于是 s 1 ( t ) = R e [ s ~ 1 ( t ) e x p ( 2 π f c t ) ] = π B T a A c [ 1 + 2 k f B T m ( t ) ] c o s [ 2 π f c t + 2 π k f ∫ 0 t m ( τ ) d τ + π 2 ] \begin{aligned}s_1(t)&=Re[\tilde{s}_1(t)exp(2\pi f_ct)]\\&=\pi B_TaA_c[1+\frac{2k_f} {B_T}m(t)]cos[2\pi f_ct+2\pi k_f\int_0^tm(\tau)d\tau+\frac\pi 2]\end{aligned} s1(t)=Re[s~1(t)exp(2πfct)]=πBTaAc[1+BT2kfm(t)]cos[2πfct+2πkf0tm(τ)dτ+2π]若选择 ∣ 2 k f B T m ( t ) ∣ < 1 对所有t |\frac{2k_f}{B_T}m(t)|\lt1\quad\text{对所有t} BT2kfm(t)<1对所有t则可用包络检波器恢复出幅度的变化量,进而恢复出原始消息信号,但存在偏差项。包络检波器的输出为 ∣ s ~ 1 ( t ) ∣ = π B T a A c [ 1 + 2 k f B T m ( t ) ] |\tilde{s}_1(t)|=\pi B_TaA_c[1+\frac{2k_f} {B_T}m(t)] s~1(t)=πBTaAc[1+BT2kfm(t)] H ~ 2 ( f ) = H ~ 1 ( − f ) \tilde{H}_2(f)=\tilde{H}_1(-f) H~2(f)=H~1(f)同理可得 ∣ s ~ 2 ( f ) ∣ = π B T a A c [ 1 − 2 k f B T m ( t ) ] |\tilde{s}_2(f)|=\pi B_TaA_c[1-\frac{2k_f} {B_T}m(t)] s~2(f)=πBTaAc[1BT2kfm(t)] s o ( f ) = ∣ s ~ 1 ( t ) ∣ − ∣ s ~ 2 ( t ) ∣ = 4 π a A c k f m ( t ) s_o(f)=|\tilde{s}_1(t)|-|\tilde{s}_2(t)|=4\pi aA_ck_fm(t) so(f)=s~1(t)s~2(t)=4πaAckfm(t)在这里插入图片描述
FM立体声复用
在这里插入图片描述

FM系统中的非线性影响

考虑一个传输特性如下的通信信道:
v o ( t ) = a 1 v i ( t ) + a 2 v i 2 ( t ) + a 3 v i 3 ( t ) v_o(t)=a_1v_i(t)+a_2v_i^2(t)+a_3v_i^3(t) vo(t)=a1vi(t)+a2vi2(t)+a3vi3(t)FMx信号的定义为 v i ( t ) = A c c o s [ 2 π f c t + ϕ ( t ) ] v_i(t)=A_ccos[2\pi f_ct+\phi(t)] vi(t)=Accos[2πfct+ϕ(t)]其中, ϕ ( t ) = 2 π k f ∫ 0 t m ( τ ) d τ \phi (t)=2\pi k_f\int_0^tm(\tau)d\tau ϕ(t)=2πkf0tm(τ)dτ v o ( t ) = a 1 A c c o s [ 2 π f c t + ϕ ( t ) ] + a 2 A c c o s 2 [ 2 π f c t + ϕ ( t ) ] + a 3 A c c o s 3 [ 2 π f c t + ϕ ( t ) ] = 1 2 a 2 A c 2 + ( a 1 A c + 3 4 a 3 A c 3 ) c o s [ 2 π f c t + ϕ ( t ) ] + 1 2 a 2 A c 2 c o s [ 4 π f c t + 2 ϕ ( t ) ] + 1 4 a 3 A c 3 c o s [ 6 π f c t + 3 ϕ ( t ) ] \begin{aligned}v_o(t)&=a_1A_ccos[2\pi f_ct+\phi(t)]+a_2A_ccos^2[2\pi f_ct+\phi(t)]+a_3A_ccos^3[2\pi f_ct+\phi(t)]\\&=\frac 1 2 a_2A_c^2+(a_1A_c+\frac 3 4a_3A_c^3)cos[2\pi f_ct+\phi(t)]+\frac1 2a_2A_c^2cos[4\pi f_ct+2\phi(t)]+\frac1 4a_3A_c^3cos[6\pi f_ct+3\phi(t)]\end{aligned} vo(t)=a1Accos[2πfct+ϕ(t)]+a2Accos2[2πfct+ϕ(t)]+a3Accos3[2πfct+ϕ(t)]=21a2Ac2+(a1Ac+43a3Ac3)cos[2πfct+ϕ(t)]+21a2Ac2cos[4πfct+2ϕ(t)]+41a3Ac3cos[6πfct+3ϕ(t)]根据卡逊准则,将载频为 f c f_c fc 2 f c 2f_c 2fc的FM信号分开的必要条件是 2 f c − ( 2 Δ f + W ) > f c + Δ f + W 2f_c-(2\Delta f+W)\gt f_c+\Delta f +W 2fc(2Δf+W)>fc+Δf+W,即 f c > 3 Δ f + W f_c\gt 3\Delta f +W fc>3Δf+W于是,经过带宽为 2 Δ f + 2 W 2\Delta f+2W 2Δf+2W,中心频率为 f c f_c fc的带通滤波器后,信道的输出为 v o ′ ( t ) = ( a 1 A c + 3 4 a 3 A c 3 ) c o s [ 2 π f c t + ϕ ( t ) ] v_o'(t)=(a_1A_c+\frac 3 4 a_3A_c^3)cos[2\pi f_ct+\phi(t)] vo(t)=(a1Ac+43a3Ac3)cos[2πfct+ϕ(t)]可见,FM信号经过幅度非线性的信道与适当的滤波器后,唯一受到的影响就是信号幅度发生了改变。

超外差接收机

连续波调制系统中的噪声

在这里插入图片描述
信噪比:基本定义
输入信噪比 ( S N R ) I (SNR)_I (SNR)I等于已调信号 s ( t ) s(t) s(t)的平均功率和滤波后的噪声 n ( t ) n(t) n(t)的平均功率之比。
输出信噪比 ( S N R ) O (SNR)_O (SNR)O等于接收机输出端测得的解调后的消息信号的平均功率和噪声平均功率之比。
信道信噪比 ( S N R ) C (SNR)_C (SNR)C等于接收机输入端测得的已调信号的平均功率和消息带宽内噪声平均功率之比。
解 调 增 益 = ( S N R ) O ( S N R ) C 解调增益=\frac{(SNR)_O}{(SNR)_C} =(SNR)C(SNR)O解调增益越大越好。

相干检测线性接收机中的噪声

当抑制载波时,使用相干检测,此时接收机是线性的;当幅度调制中包含了载波时,使用包络检波,此时接收机是非线性的。本节研究噪声对线性接收机的影响。
在这里插入图片描述
滤波后信号 x ( t ) x(t) x(t)的DSB-SC分量为 s ( t ) = C A c c o s ( 2 π f c t ) m ( t ) s(t)=CA_ccos(2\pi f_ct)m(t) s(t)=CAccos(2πfct)m(t)其中 A c c o s ( 2 π f c t ) A_ccos(2\pi f_ct) Accos(2πfct)为正弦载波, m ( t ) m(t) m(t)为消息信号,C为系统的比例因子,其作用是保证信号分量 s ( t ) s(t) s(t)与加性噪声分量 n ( t ) n(t) n(t)的单位相同。
假定 m ( t ) m(t) m(t)是零均值平稳过程的样本函数, m ( t ) m(t) m(t)的功率谱密度被限制在最高频率W以内,W为消息带宽。则消息的平均功率密度为 P = ∫ − W W S M ( f ) d f P=\int_{-W}^WS_M(f)df P=WWSM(f)df
对于随机调制过程,可将DSB-SC已调信号分量 s ( t ) s(t) s(t)的平均功率记为 C 2 A c 2 P 2 \frac{C^2A_c^2P}2 2C2Ac2P。若噪声的功率谱密度为 N 0 2 \frac{N_0}2 2N0,则消息带宽内的平均噪声功率等于 W N 0 WN_0 WN0,因而,DSB-SC调制系统中信道信噪比为 ( S N R ) C , D S B = C 2 A c 2 P 2 W N 0 (SNR)_{C,DSB}=\frac{C^2A_c^2P}{2WN_0} (SNR)C,DSB=2WN0C2Ac2P


  1. 研究通信系统的主线之一 ↩︎

  2. 研究通信系统的主线之二 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值