LeetCode: 拓扑排序 题型知识点

解决有向无环图(DAG)的判断

207. 课程表
210. 课程表 II

本题需要判断是否为有向无环图(DAG),主要思路是通过拓扑排序来判断。
拓扑排序思路:对 DAG 的顶点进行排序,使得对每一条有向边(u,v),均有 u(在排序记录中)比 v 先出现即可。
下面还用到了邻接表辅助,补充一下邻接表的概念,如下图以及对应的邻接表:
图
在这里插入图片描述

解题方法,参考题解

  1. 拓扑排序+BFS
    原理:从入度为0的节点开始广搜,每次删除连接的边并维护入度和节点数,把入度更新为0的节点再次加入队列,直到队列为空(把删除的顺序连接起来就是一种排序结果,这样能体现出拓扑排序的感觉)。如果剩余的节点数为0,则代表有一种包含所有节点的排序结果;若不为0,则拓扑排序失败。
class Solution {
   
    public boolean canFinish(int numCourses, int[][] prerequisites) {
   
        //入度表
        int[] indegrees = new int[numCourses];
        //邻接表,用adj.get(i)拿取下标为i,代表编号为i的课程。(如果编号没有规范则需要一个Map?)
        List<List<Integer>> adj = new ArrayList<>();
        for(int i = 0 ; i < numCourses ; i++){
   
            adj.add(new ArrayList<Integer>());
        }
        //BFS队列
        Queue<Integer> que = new LinkedList<>();

        //装载入度表和邻接表
        for(int[] item : prerequisites){
           //题意中[a,b]表示需要先学b,所以应该是a<-b
            indegrees[item[0]]++;
            adj.get(item[1]).add(item[0]);
        }
        //把入度为0的节点加入队列作为起始顶点
        for(int i = 0 ; i < numCourses ; i++){
   
            if(indegrees[i]==0) que.offer(i);
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值