Pytorch-使用DeepLabV3+训练自己的数据集

源码:link
我的环境:win11+torch1.7.1

1、数据准备

1.1 使用labelme标注数据集
1.2 将标注好的图片文件和.json放在dataste/before/文件夹下,然后修改json_to_dataset.py文件中的classes,保留background,添加自己的类型。此后在JPEGImages中看到自己的图片,SegmentationClass看到制作好后的.json标注文件。
在这里插入图片描述
1.3 将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中,将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。运行根目录下的voc_annotation.py,从而生成train.txt和val.txt。
在这里插入图片描述

2、训练

2.1 修改参数

修改train.py中的num_classes。num_classes用于指向检测类别的个数+1!训练自己的数据集必须要修改!

2.2 训练过程

下面就train.py代码进行具体分析
①设置参数

    #---------------------------------#
    #   Cuda    是否使用Cuda
    #           没有GPU可以设置成False
    #---------------------------------#
    Cuda            = True
    #---------------------------------------------------------------------#
    #   distributed     用于指定是否使用单机多卡分布式运行
    #                   终端指令仅支持Ubuntu。CUDA_VISIBLE_DEVICES用于在Ubuntu下指定显卡。
    #                   Windows系统下默认使用DP模式调用所有显卡,不支持DDP。
    #   DP模式:
    #       设置            distributed = False
    #       在终端中输入    CUDA_VISIBLE_DEVICES=0,1 python train.py
    #   DDP模式:
    #       设置            distributed = True
    #       在终端中输入    CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py
    #---------------------------------------------------------------------#
    distributed     = False
    #---------------------------------------------------------------------#
    #   sync_bn     是否使用sync_bn,DDP模式多卡可用
    #---------------------------------------------------------------------#
    sync_bn         = False
    #---------------------------------------------------------------------#
    #   fp16        是否使用混合精度训练
    #               可减少约一半的显存、需要pytorch1.7.1以上
    #---------------------------------------------------------------------#
    fp16            = False
    #-----------------------------------------------------#
    #   num_classes     训练自己的数据集必须要修改的
    #                   自己需要的分类个数+1,如2+1
    #-----------------------------------------------------#
    num_classes     = 2
    #---------------------------------#
    #   所使用的的主干网络:
    #   mobilenet
    #   xception
    #---------------------------------#
    backbone        = "mobilenet"
    #----------------------------------------------------------------------------------------------------------------------------#
    #   pretrained      是否使用主干网络的预训练权重,此处使用的是主干的权重,因此是在模型构建的时候进行加载的。
    #                   如果设置了model_path,则主干的权值无需加载,pretrained的值无意义。
    #                   如果不设置model_path,pretrained = True,此时仅加载主干开始训练。
    #                   如果不设置model_path,pretrained = False,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。
    #----------------------------------------------------------------------------------------------------------------------------#
    pretrained      = False
    #----------------------------------------------------------------------------------------------------------------------------#
    #   权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。
    #   模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。
    #   预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好
    #   训练自己的数据集时提示维度不匹配正常,预测的东西都不一样了自然维度不匹配
    #
    #   如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。
    #   同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。
    #   
    #   当model_path = ''的时候不加载整个模型的权值。
    #
    #   此处使用的是整个模型的权重,因此是在train.py进行加载的,pretrain不影响此处的权值加载。
    #   如果想要让模型从主干的预训练权值开始训练,则设置model_path = '',pretrain = True,此时仅加载主干。
    #   如果想要让模型从0开始训练,则设置model_path = '',pretrain = Fasle,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。
    #   
    #   一般来讲,网络从0开始的训练效果会很差,因为权值太过随机,特征提取效果不明显,因此非常、非常、非常不建议大家从0开始训练!
    #   如果一定要从0开始,可以了解imagenet数据集,首先训练分类模型,获得网络的主干部分权值,分类模型的 主干部分 和该模型通用,基于此进行训练。
    #----------------------------------------------------------------------------------------------------------------------------#
    model_path      = "model_data/deeplab_mobilenetv2.pth"
    #---------------------------------------------------------#
    #   downsample_factor   下采样的倍数8、16 
    #                       8下采样的倍数较小、理论上效果更好。
    #                       但也要求更大的显存
    #---------------------------------------------------------#
    downsample_factor   = 16
    #------------------------------#
    #   输入图片的大小
    #------------------------------#
    input_shape         = [512, 512]
    
    #----------------------------------------------------------------------------------------------------------------------------#
    #   训练分为两个阶段,分别是冻结阶段和解冻阶段。设置冻结阶段是为了满足机器性能不足的同学的训练需求。
    #   冻结训练需要的显存较小,显卡非常差的情况下,可设置Freeze_Epoch等于UnFreeze_Epoch,此时仅仅进行冻结训练。
    #      
    #   在此提供若干参数设置建议,各位训练者根据自己的需求进行灵活调整:
    #   (一)从整个模型的预训练权重开始训练: 
    #       Adam:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(不冻结)
    #       SGD:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(不冻结)
    #       其中:UnFreeze_Epoch可以在100-300之间调整。
    #   (二)从主干网络的预训练权重开始训练:
    #       Adam:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(不冻结)
    #       SGD:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 120,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 120,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(不冻结)
    #       其中:由于从主干网络的预训练权重开始训练,主干的权值不一定适合语义分割,需要更多的训练跳出局部最优解。
    #             UnFreeze_Epoch可以在120-300之间调整。
    #             Adam相较于SGD收敛的快一些。因此UnFreeze_Epoch理论上可以小一点,但依然推荐更多的Epoch。
    #   (三)batch_size的设置:
    #       在显卡能够接受的范围内,以大为好。显存不足与数据集大小无关,提示显存不足(OOM或者CUDA out of memory)请调小batch_size。
    #       受到BatchNorm层影响,batch_size最小为2,不能为1。
    #       正常情况下Freeze_batch_size建议为Unfreeze_batch_size的1-2倍。不建议设置的差距过大,因为关系到学习率的自动调整。
    #----------------------------------------------------------------------------------------------------------------------------#
    #------------------------------------------------------------------#
    #   冻结阶段训练参数
    #   此时模型的主干被冻结了,特征提取网络不发生改变
    #   占用的显存较小,仅对网络进行微调
    #   Init_Epoch          模型当前开始的训练世代,其值可以大于Freeze_Epoch,如设置:
    #                       Init_Epoch = 60、Freeze_Epoch = 50、UnFreeze_Epoch = 100
    #                       会跳过冻结阶段,直接从60代开始,并调整对应的学习率。
    #                       (断点续练时使用)
    #   Freeze_Epoch        模型冻结训练的Freeze_Epoch
    #                       (当Freeze_Train=False时失效)
    #   Freeze_batch_size   模型冻结训练的batch_size
    #                       (当Freeze_Train=False时失效)
    #------------------------------------------------------------------#
    Init_Epoch          = 0
    Freeze_Epoch        = 40
    Freeze_batch_size   = 24
    #------------------------------------------------------------------#
    #   解冻阶段训练参数
    #   此时模型的主干不被冻结了,特征提取网络会发生改变
    #   占用的显存较大,网络所有的参数都会发生改变
    #   UnFreeze_Epoch          模型总共训练的epoch
    #   Unfreeze_batch_size     模型在解冻后的batch_size
    #------------------------------------------------------------------#
    UnFreeze_Epoch      = 80
    Unfreeze_batch_size = 12
    #------------------------------------------------------------------#
    #   Freeze_Train    是否进行冻结训练
    #                   默认先冻结主干训练后解冻训练。
    #------------------------------------------------------------------#
    Freeze_Train        = True

    #------------------------------------------------------------------#
    #   其它训练参数:学习率、优化器、学习率下降有关
    #------------------------------------------------------------------#
    #------------------------------------------------------------------#
    #   Init_lr         模型的最大学习率
    #                   当使用Adam优化器时建议设置  Init_lr=5e-4
    #                   当使用SGD优化器时建议设置   Init_lr=7e-3
    #   Min_lr          模型的最小学习率,默认为最大学习率的0.01
    #------------------------------------------------------------------#
    Init_lr             = 7e-4
    Min_lr              = Init_lr * 0.01
    #------------------------------------------------------------------#
    #   optimizer_type  使用到的优化器种类,可选的有adam、sgd
    #                   当使用Adam优化器时建议设置  Init_lr=5e-4
    #                   当使用SGD优化器时建议设置   Init_lr=7e-3
    #   momentum        优化器内部使用到的momentum参数
    #   weight_decay    权值衰减,可防止过拟合
    #                   adam会导致weight_decay错误,使用adam时建议设置为0。
    #------------------------------------------------------------------#
    optimizer_type      = "sgd"
    momentum            = 0.9
    weight_decay        = 1e-8
    #------------------------------------------------------------------#
    #   lr_decay_type   使用到的学习率下降方式,可选的有'step'、'cos'
    #------------------------------------------------------------------#
    lr_decay_type       = 'cos'
    #------------------------------------------------------------------#
    #   save_period     多少个epoch保存一次权值
    #------------------------------------------------------------------#
    save_period         = 5
    #------------------------------------------------------------------#
    #   save_dir        权值与日志文件保存的文件夹
    #------------------------------------------------------------------#
    save_dir            = 'logs'
    #------------------------------------------------------------------#
    #   eval_flag       是否在训练时进行评估,评估对象为验证集
    #   eval_period     代表多少个epoch评估一次,不建议频繁的评估
    #                   评估需要消耗较多的时间,频繁评估会导致训练非常慢
    #   此处获得的mAP会与get_map.py获得的会有所不同,原因有二:
    #   (一)此处获得的mAP为验证集的mAP。
    #   (二)此处设置评估参数较为保守,目的是加快评估速度。
    #------------------------------------------------------------------#
    eval_flag           = True
    eval_period         = 5

    #------------------------------------------------------------------#
    #   VOCdevkit_path  数据集路径
    #------------------------------------------------------------------#
    VOCdevkit_path  = 'VOCdevkit'
    #------------------------------------------------------------------#
    #   建议选项:
    #   种类少(几类)时,设置为True
    #   种类多(十几类)时,如果batch_size比较大(10以上),那么设置为True
    #   种类多(十几类)时,如果batch_size比较小(10以下),那么设置为False
    #------------------------------------------------------------------#
    dice_loss       = True
    #------------------------------------------------------------------#
    #   是否使用focal loss来防止正负样本不平衡
    #------------------------------------------------------------------#
    focal_loss      = False
    #------------------------------------------------------------------#
    #   是否给不同种类赋予不同的损失权值,默认是平衡的。
    #   设置的话,注意设置成numpy形式的,长度和num_classes一样。
    #   如:
    #   num_classes = 3
    #   cls_weights = np.array([1, 2, 3], np.float32)
    #------------------------------------------------------------------#
    cls_weights     = np.ones([num_classes], np.float32)
    #------------------------------------------------------------------#
    #   num_workers     用于设置是否使用多线程读取数据,1代表关闭多线程
    #                   开启后会加快数据读取速度,但是会占用更多内存
    #                   keras里开启多线程有些时候速度反而慢了许多
    #                   在IO为瓶颈的时候再开启多线程,即GPU运算速度远大于读取图片的速度。
    #------------------------------------------------------------------#
    num_workers         = 4

    #------------------------------------------------------#
    #   设置用到的显卡
    #------------------------------------------------------#
    ngpus_per_node  = torch.cuda.device_count()
    if distributed:
        dist.init_process_group(backend="nccl")
        local_rank  = int(os.environ["LOCAL_RANK"])
        rank        = int(os.environ["RANK"])
        device      = torch.device("cuda", local_rank)
        if local_rank == 0:
            print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...")
            print("Gpu Device Count : ", ngpus_per_node)
    else:
        device          = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        local_rank      = 0

    #----------------------------------------------------#
    #   下载预训练权重
    #----------------------------------------------------#
    if pretrained:
        if distributed:
            if local_rank == 0:
                download_weights(backbone)  
            dist.barrier()
        else:
            download_weights(backbone)

②DeepLabV3+模型

在这里插入图片描述
1)Encoder: backbone-MobileNetV2

class MobileNetV2(nn.Module):
    def __init__(self, n_class=1000, input_size=224, width_mult=1.):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t(扩展比例), c(输出通道数), n(重复次数), s(步长)       每个Inverted Residual Block的设置参数
            [1, 16, 1, 1], # 256, 256, 32 -> 256, 256, 16
            [6, 24, 2, 2], # 256, 256, 16 -> 128, 128, 24   2
            [6, 32, 3, 2], # 128, 128, 24 -> 64, 64, 32     4
            [6, 64, 4, 2], # 64, 64, 32 -> 32, 32, 64       7
            [6, 96, 3, 1], # 32, 32, 64 -> 32, 32, 96
            [6, 160, 3, 2], # 32, 32, 96 -> 16, 16, 160     14
            [6, 320, 1, 1], # 16, 16, 160 -> 16, 16, 320
        ]

        assert input_size % 32 == 0

        # 根据宽度倍数调整输入通道数和最后输出通道数
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        # 512, 512, 3 -> 256, 256, 32
        self.features = [conv_bn(3, input_channel, 2)]

        # 通过遍历interverted_residual_setting列表中的每个设置参数,构建MobileNetV2模型的特征提取部分。
        for t, c, n, s in interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):  # n=17
                if i == 0:
                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
                else:
                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
                input_channel = output_channel

        self.features.append(conv_1x1_bn(input_channel, self.last_channel))
        self.features = nn.Sequential(*self.features)

        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = x.mean(3).mean(2)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()
class MobileNetV2(nn.Module):
    def __init__(self, downsample_factor=8, pretrained=True):
        super(MobileNetV2, self).__init__()
        from functools import partial
        
        model           = mobilenetv2(pretrained)
        # ---------------------------------------------------------#
        #   把最后一层卷积剔除,也就是
        #   17 InvertedResidual后跟着的 18 常规1x1卷积 剔除
        # ---------------------------------------------------------#
        self.features   = model.features[:-1]
        # ----------------------------------------------------------------------#
        #   18 = 开始的常规conv + 17 个InvertedResidual,即features.0到features.17
        # ----------------------------------------------------------------------#
        self.total_idx  = len(self.features)
        # ---------------------------------------------------------#
        #   每个 下采样block 所处的索引位置
        #   即Output Shape h、w尺寸变为原来的1/2
        # ---------------------------------------------------------#
        self.down_idx   = [2, 4, 7, 14]
        # -------------------------------------------------------------------------------------------------#
        #   若下采样倍数为8,则网络会进行3次下采样(features.0,features.2,features.4),尺寸 512->64
        #       需要对后两处下采样block(步长s为2的InInvertedResidual)的参数进行修改,使其变为空洞卷积,尺寸不再下降
        #       再解释一下,下采样倍数为8,表示输入尺寸缩小为原来的1/8,也就是经历3次步长为2的卷积
        #
        #   若下采样倍数为16,则会进行4次下采样(features.0,features.2,features.4,features.7),尺寸 512-> 32
        #       只需要对最后一处 下采样block 的参数进行修改
        # -------------------------------------------------------------------------------------------------#
        if downsample_factor == 8:
            for i in range(self.down_idx[-2], self.down_idx[-1]):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=4)
                )
        elif downsample_factor == 16:
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )

    # ----------------------------------------------------------------------#
    #   _nostride_dilate函数目的:通过修改卷积参数实现 self.features[i] 尺寸不变
    # ----------------------------------------------------------------------#
    def _nostride_dilate(self, m, dilate):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            if m.stride == (2, 2):
                m.stride = (1, 1)
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate//2, dilate//2)
                    m.padding = (dilate//2, dilate//2)
            else:
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate, dilate)
                    m.padding = (dilate, dilate)

    def forward(self, x):
        # ------------------------------------------------------------------------------#
        #   low_level_features表示低(浅)层语义特征,只进行了features.0和features.2两次下采样,
        #       features.3的输出尺寸和features.2一样
        #       输入为512x512,下采样倍数为16时,CHW:[24, 128, 128]
        # ------------------------------------------------------------------------------#
        low_level_features = self.features[:4](x)
        # ------------------------------------------------------#
        #   x表示高(深)层语义特征,其h、w尺寸更小些
        #       输入为512x512,下采样倍数为16时,CHW:[320, 32, 32]
        # ------------------------------------------------------#
        x = self.features[4:](low_level_features)
        return low_level_features, x 

2)Encoder: ASPP

#-----------------------------------------#
#   ASPP特征提取模块
#   利用不同膨胀率的膨胀卷积进行特征提取
#-----------------------------------------#
class ASPP(nn.Module):
	def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):
		super(ASPP, self).__init__()
		self.branch1 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),
		)
		self.branch2 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
		self.branch3 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
		self.branch4 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
        # -----------------------------------------#
        #   结合forward中第五个分支去看
        # -----------------------------------------#
		self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True)
		self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)
		self.branch5_relu = nn.ReLU(inplace=True)
        # -----------------------------------------#
        #   五个分支堆叠后的特征,经1x1卷积去整合特征
        # -----------------------------------------#
		self.conv_cat = nn.Sequential(
				nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),		
		)

	def forward(self, x):
		[b, c, row, col] = x.size()
        #-----------------------------------------#
        #   一共五个分支
        #-----------------------------------------#
		conv1x1 = self.branch1(x)
		conv3x3_1 = self.branch2(x)
		conv3x3_2 = self.branch3(x)
		conv3x3_3 = self.branch4(x)
        #-----------------------------------------#
        #   第五个分支,全局平均池化+卷积
        #-----------------------------------------#
		global_feature = torch.mean(x,2,True)
		global_feature = torch.mean(global_feature,3,True)
		global_feature = self.branch5_conv(global_feature)
		global_feature = self.branch5_bn(global_feature)
		global_feature = self.branch5_relu(global_feature)
        # ---------------------------------------------#
        #   利用插值方法,对输入的张量数组进行上\下采样操作
        #       这样才能去和上面四个特征图进行堆叠
        #       (row, col):输出空间的大小
        # ---------------------------------------------#
		global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)
		
        #-----------------------------------------#
        #   将五个分支的内容堆叠起来
        #   然后1x1卷积整合特征。
        #-----------------------------------------#
		feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)
		result = self.conv_cat(feature_cat)
		return result

3)Decoder: 将浅层特征和深层特征进行特征融合,经过特征融合后的特征图将通过进一步的卷积操作和上采样操作,以生成最终的分割预测。

		#-----------------------------------------#
        #   获得两个特征层
        #   low_level_features: 浅层特征-进行卷积处理
        #   x : 主干部分-利用ASPP结构进行加强特征提取
        #-----------------------------------------#
        low_level_features, x = self.backbone(x)
        x = self.aspp(x)
        # -----------------------------------------#
        #   对获取到的特征进行分类,获取每个像素点的种类
        #   对于VOC数据集,输出尺寸CHW为[21, 128, 128]
        #   21个类别,这儿就输出21个channel,
        #	然后经过softmax以及argmax等操作完成像素级分类任务
        # -----------------------------------------#
        low_level_features = self.shortcut_conv(low_level_features)
        
        #-----------------------------------------#
        #   将加强特征边上采样
        #   与浅层特征堆叠后利用卷积进行特征提取
        #-----------------------------------------#
        x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)
        x = self.cat_conv(torch.cat((x, low_level_features), dim=1))
        x = self.cls_conv(x)
        # -----------------------------------------#
        #   通过上采样使得最终输出层,高宽和输入图片一样。
        # -----------------------------------------#
        x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)
        return x

3、预测

在predict.py文件中找到mode进行参数修改,选择指定的测试模式。
在这里插入图片描述

参考文章:
1、https://blog.csdn.net/hhb3329/article/details/127711336
2、https://blog.csdn.net/weixin_45377629/article/details/124083978

  • 9
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
为了在PyTorch中对DeepLabV3模型进行训练,需要按照以下详细步骤: 1. 准备Cityscapes数据集:首先下载Cityscapes数据集,并解压缩到指定目录。Cityscapes数据集包括了大量城市场景的图像和对应的标注数据。 2. 数据预处理:对Cityscapes数据集进行预处理,包括图像大小调整、数据增强和标签映射等操作,以便与DeepLabV3模型进行训练和评估。 3. 构建DeepLabV3模型:在PyTorch环境中构建DeepLabV3模型,可以选择使用训练模型进行迁移学习,也可以从头开始训练。 4. 定义损失函数和优化器:为模型定义损失函数和优化器,常用的损失函数包括交叉熵损失函数等,优化器可以选择Adam、SGD等。 5. 进行训练:将预处理后的Cityscapes数据集输入到DeepLabV3模型中进行训练,根据损失函数和优化器进行参数更新,直到模型收敛或达到指定的训练轮数。 6. 模型评估:使用训练好的DeepLabV3模型对Cityscapes数据集进行评估,计算模型在测试集上的准确率、召回率等指标。 7. 模型优化:根据评估结果对模型进行优化,可以调整模型结构、超参数,或者尝试不同的训练策略等方法。 通过以上步骤,可以在PyTorch环境中成功移植并训练DeepLabV3模型,基于Cityscapes数据集实现语义分割任务。这个过程需要一定的PyTorch基础和对深度学习模型训练的理解,但是通过不断尝试和调整,可以得到更好的训练效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值