Spark

RDD与DataFream

使用场景:

1)RDD
a 你希望可以对你的数据集进行最基本的转换、处理和控制;
b 你的数据是非结构化的,比如流媒体或者字符流;
c 你想通过函数式编程而不是特定领域内的表达来处理你的数据;
d 你不希望像进行列式处理一样定义一个模式,通过名字或字段来处理或访问数据属性;
e 你并不在意通过 DataFrame 和 Dataset 进行结构化和半结构化数据处理所能获得的一些优化和性能上的好处;
2)DataFream
当读取的数据是结构化或半结构化的数据优先使用DataFream设计 DataFrame 的目的就是要让对大型数据集的处理变得更简单,它让开发者可以为分布式的数据集指定一个模式,进行更高层次的抽象。

区别

1)提升执行效率
2)减少数据读取
3)执行优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值