代码随想录刷题Day39

文章介绍了两个使用二维动态规划解决的路径问题。在UniquePaths问题中,从左上角到右下角的唯一路径数量被计算。在UniquePathsII中,考虑了障碍格子,遇到障碍时路径不可通过。解题策略包括初始化二维数组,并根据障碍情况更新路径可能性。
摘要由CSDN通过智能技术生成

62. Unique Paths

做得第一个二维动态规划,还是比较简单,先遍历列,每列遍历完然后遍历下一行,犯的错误以及代码如下

class Solution {
public:
    int uniquePaths(int m, int n) {

       // vector<int> dp[n*m+1];这里傻逼了,这要创建二维数组,记一下二维vector的初始化方法
       vector<vector<int>> dp(m,vector<int>(n,0));

        for(int i=0;i<m;i++){
            dp[i][0] =1;   //i is for m, which is row
        }

        for(int j=0;j<n;j++){
            dp[0][j] =1;   // j is for N, which is column
        }

        //for(int i=1,j=1; i<m,j<n;i++,j++){
          //  dp[i][j] = dp[i-1][j] +dp[i][i-1];
        //}

        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j] = dp[i-1][j] +dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

63. Unique Paths II

简单题目,注意当obstacle不等于0 的时候直接continue,这样那个格子就会保持初值

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m =obstacleGrid.size(); //二维数组直接取size取到的是行
        int n = obstacleGrid[0].size();   //记一下取列的方法

        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;

        vector<vector<int>> dp(m,vector<int>(n,0));

          for (int i = 0; i < m && obstacleGrid[i][0] != 1; i++){
            dp[i][0] =1;   //i is for m, which is row
        }

       for (int j = 0; j < n && obstacleGrid[0][j] != 1; j++){
            dp[0][j] =1;   // j is for N, which is column
        }

         for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

         for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if (obstacleGrid[i][j] == 1) continue; //有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。这里直接continue所以就不会改变这个格子的数据,就会是一开始初始化的数据0
                dp[i][j] = dp[i-1][j] +dp[i][j-1];
            }
        }

    return dp[m-1][n-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值