GZM毒瘤数论DAY2——2019暑假篇

这篇博客详细解析了三个数论问题,包括棋盘染色的期望次数计算、游戏策略分析以及排列合并的计数问题。涉及数学期望、模运算和动态规划,对提高数论解题能力有所帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一.T1

1.题目

1.题目描述

2.输入

3.输出

4.样例输入1

5.样例输出1

6.样例输入2

7.样例输出2

8.数据范围

2.题解

3.Code

二.T2

1.题目

1.题目描述:

2.输入

3.输出

4.样例输入

5.样例输出

6.样例解释

7.数据范围

2.题解

3.Code

三.T3

1.题目

1.题目描述

2.样例输入1

3.样例输出1

4.样例输出2

5.样例输出2

6.样例解释

7.数据范围

2.题解

3.Code

谢谢!


毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤毒瘤

一.T1

1.题目

1.题目描述

有一n*m的棋盘,每次随机染黑一个位置(可能染到已经黑了的),当某一行或者一列全为黑色时停止,求期望染色次数(mod 998244353)

2.输入

一行两个正整数n,m

3.输出

期望结果

4.样例输入1

2 2

5.样例输出1

3

6.样例输入2

10 20

7.样例输出2

397903748

8.数据范围

对于20%的数据n,m<=5

对于100%的数据n,m<=1000

2.题解

这道题目的重点就在于数学期望,首先要懂得什么叫做期望(点击打开链接)

好,那么来说说这道题目的期望怎么算。

首先,指定一个格子,选中它的概率就是1/(n + m),然后取倒,也就期望(n + m)次能抽到它;

如果是两个格子,就是选中一个格子的期望步数+选中两个格子的期望步数:(n + m) + (n + m) / 2;

以此类推,后面就都是这样。

然后处理总期望,就是枚举选出的行和列,加起

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值