SLAM文献之LP-ICP: General Localizability-Aware Point Cloud Registration for Robust Localization in Extr

LP-ICP(Localizability-aware Point-to-Line and Point-to-Plane ICP)是一种针对极端非结构化环境中退化问题的点云配准框架。该方法通过结合点到线和点到面的距离度量,并引入可定位性检测与处理机制,提高了配准的准确性和鲁棒性。以下是该算法的相关内容。
在这里插入图片描述


一、算法原理概述

传统的ICP算法在特征稀疏或几何结构不明显的环境中容易出现退化,导致位姿估计在某些方向上不准确。LP-ICP通过以下两个模块来解决这一问题:

  1. 可定位性检测模块:分析边缘点(局部平滑度低)与线的对应关系,以及平面点(局部平滑度高)与面的对应关系,评估每个约束对位姿估计的贡献。
  2. 优化模块:根据可定位性分析结果,在优化过程中引入软约束和硬约束,限制位姿更新在退化方向上的变化。

二、系统框架流程

┌───────────────────────────┐
│ 1. 预处理 (Preprocessing) │
│  • 特征提取:边缘点/面点       │
│  • 构建 KD-Tree(地图)      │
└─────────┬─────────────────┘
          │
          ▼
┌───────────────────────────┐
│ 2. 对应关系建立            │
│  • 边缘点→直线 (point-to-line) │
│  • 面点→平面 (point-to-plane) │
└─────────┬─────────────────┘
          │
          ▼
┌───────────────────────────┐
│ 3. 可定位性检测 (Detection) │
│  • 计算每个约束的“信息贡献”   │
│  • 判断每个约束在各自由度上的 │
│    观测强度 → 良好/弱/退化    │
└─────────┬─────────────────┘
          │
          ▼
┌───────────────────────────┐
│ 4. 局部优化 (Optimization) │
│  • 构建带权残差的 ICP 代价函数│
│  • 对“退化方向”添加软/硬约束 │
│  • Gauss–Newton 求解更新    │
└─────────┬─────────────────┘
          │
          ▼
┌───────────────────────────┐
│ 5. 输出最优位姿            │
└───────────────────────────┘

三、可定位性检测模块

该模块的核心是评估每个点云对应关系对位姿估计的贡献,具体步骤如下:

  1. 特征提取:从扫描点云中提取边缘点和平面点。
  2. 对应关系建立:将边缘点与地图中的线特征对应,平面点与面特征对应。
  3. 贡献度评估:计算每个对应关系对位姿估计的贡献度,形成信息矩阵。

通过上述步骤,构建出一个稀疏的因子图,反映每个约束在六自由度空间中的贡献。

可定位性贡献分析细节过程:

  • 对于边缘点(点到线):

    • 旋转方向贡献:$F_{e_r}^i \in \mathbb{R}^{3 \times 1}$

    • 平移方向贡献:$F_{e_t}^i \in \mathbb{R}^{3 \times 1}$

  • 对于平面点(点到面):

    • 旋转方向贡献:$F_{p_r}^j \in \mathbb{R}^{3 \times 1}$

    • 平移方向贡献:$F_{p_t}^j \in \mathbb{R}^{3 \times 1}$

通过聚合所有对应关系在每个自由度方向上的贡献,并与预设阈值进行比较,LP-ICP将每个方向的可定位性分为三类:

  • 完全可定位(Full):该方向上的约束充足,位姿估计可靠。

  • 部分可定位(Partial):该方向上的约束有限,位姿估计可能存在不确定性。

  • 不可定位(None):该方向上缺乏约束,位姿估计存在退化风险。


四、优化模块

在优化模块中,LP-ICP引入了软约束和硬约束,以限制位姿更新在退化方向上的变化。具体的优化问题可以表示为带约束的最小二乘问题:([ar5iv][1], [johnwlambert.github.io][2])

min ⁡ δ ξ ∑ i ∥ r i ( δ ξ ) ∥ 2 subject to A δ ξ = b \min_{\delta \xi} \sum_{i} \| r_i(\delta \xi) \|^2 \quad \text{subject to} \quad A \delta \xi = b δξminiri(δξ)2subject toAδξ=b

其中:

  • δ ξ \delta \xi δξ:位姿增量。
  • r i ( δ ξ ) r_i(\delta \xi) ri(δξ):第 i i i个残差。
  • A δ ξ = b A \delta \xi = b Aδξ=b:线性约束,表示在退化方向上的限制。

使用拉格朗日乘子法将上述带约束的优化问题转化为无约束问题:

min ⁡ δ ξ , λ ∑ i ∥ r i ( δ ξ ) ∥ 2 + λ T ( A δ ξ − b ) \min_{\delta \xi, \lambda} \sum_{i} \| r_i(\delta \xi) \|^2 + \lambda^T (A \delta \xi - b) δξ,λminiri(δξ)2+λT(Aδξb)

然后,使用高斯-牛顿方法求解该优化问题,迭代更新位姿,直到收敛。

优化约束机制细节:

根据可定位性检测结果,LP-ICP在优化过程中引入不同类型的约束:

  • 硬约束(Hard Constraint):对于不可定位的方向,禁止位姿在该方向上的更新,以防止估计漂移。

  • 软约束(Soft Constraint):对于部分可定位的方向,引入惩罚项,使位姿更新趋向于约束值,但不强制等于该值,从而减少估计波动。

  • 无约束(No Constraint):对于完全可定位的方向,允许位姿自由更新。

这种约束机制确保了在退化方向上的位姿估计稳定性,同时保留了在良好约束方向上的估计精度。


五、公式推导细节

在优化过程中,残差函数 r i ( δ ξ ) r_i(\delta \xi) ri(δξ)通常是非线性的,因此需要进行线性化处理。对残差函数进行一阶泰勒展开:

r i ( δ ξ ) ≈ r i ( 0 ) + J i δ ξ r_i(\delta \xi) \approx r_i(0) + J_i \delta \xi ri(δξ)ri(0)+Jiδξ

其中:

  • r i ( 0 ) r_i(0) ri(0):当前估计下的残差。
  • J i J_i Ji:残差对位姿的雅可比矩阵。

将线性化后的残差代入优化目标函数,得到:

min ⁡ δ ξ ∑ i ∥ r i ( 0 ) + J i δ ξ ∥ 2 + λ T ( A δ ξ − b ) \min_{\delta \xi} \sum_{i} \| r_i(0) + J_i \delta \xi \|^2 + \lambda^T (A \delta \xi - b) δξminiri(0)+Jiδξ2+λT(Aδξb)

对上述目标函数求导并令导数为零,得到正规方程:

( ∑ i J i T J i ) δ ξ + A T λ = − ∑ i J i T r i ( 0 ) \left( \sum_{i} J_i^T J_i \right) \delta \xi + A^T \lambda = -\sum_{i} J_i^T r_i(0) (iJiTJi)δξ+ATλ=iJiTri(0)

A δ ξ = b A \delta \xi = b Aδξ=b

该线性方程组可以使用QR分解等数值方法求解,得到位姿增量 δ ξ \delta \xi δξ和拉格朗日乘子 λ \lambda λ


六、主要创新点与贡献

  1. 细粒度的可定位性检测:LP-ICP能够在6自由度的每个方向上独立评估可定位性,而非仅提供整体的退化评估,从而实现更精确的退化检测。([CSDN博客][1])

  2. 结合点到线和点到面的距离度量:通过同时利用边缘点和平面点的几何特征,增强了配准的鲁棒性和准确性。

  3. 引入软硬约束的优化机制:根据可定位性分类结果,动态调整优化过程中的约束策略,有效防止了在退化方向上的估计误差积累。

  4. 广泛的实验验证:在仿真和真实世界的数据集上进行了大量实验,结果显示LP-ICP在定位精度和鲁棒性方面优于或等同于现有最先进的方法。

  5. 开源实现:LP-ICP的代码和数据集已在GitHub上开源,便于研究人员和工程师进行复现和进一步研究。


七、实验验证

LP-ICP在多个仿真和真实世界的数据集上进行了验证,包括KITTI、NCLT等。实验结果表明,LP-ICP在退化环境下的定位精度和鲁棒性优于传统的ICP和其他先进方法。


八、代码与数据集

LP-ICP的代码和数据集已开源,地址为:

🔗 https://github.com/xuqingyuan2000/LP-ICP

该仓库包含了算法的实现、使用说明以及相关数据集,方便研究人员和工程实践者进行测试和应用。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值