题目大意
给你一个n个点,m条边的无向图,每个点有一个非负的权值ci,现在你需要选择一些点,使得每一个点都满足:
如果这个点没有被选择,则与它有边相连的所有点都必须被选择。
问:满足上述条件的点集中,所有选择的点的权值和最小是多少?
题目解析
直接搜索就好了,当然不要 O(2^n)那种,
剪枝:
1、每次搜索的时候如果这个点不选,就直接把与它相连的所有点选上,
2、如果现在的结果已经比现在的最佳答案大了就直接不搜了。
代码
#pragma GCC optimize(2)
#include<cstdio>
#include<vector>
using namespace std;
int n,m,x,y,ans=1e9;
int w[55],flag[55];
vector<int> a[55];
void dfs(int lev,int sum)
{
if(sum>=ans) return;
if(lev>n)
{
ans=sum;
return;
}
flag[lev]++;dfs(lev+1,sum+w[lev]);flag[lev]--;
if(!flag[lev])
{
for(int i=0;i<a[lev].size();i++)
flag[a[lev][i]]++;
dfs(lev+1,sum);
for(int i=0;i<a[lev].size();i++)
flag[a[lev][i]]--;
}
}
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
if(x==y&&!flag[x])
flag[x]=1,ans+=w[x];
else
a[x].push_back(y),a[y].push_back(x);
}
dfs(1,0);
printf("%d",ans);
}