[第七届蓝桥杯省赛C++A/B组]四平方和

来源: 第七届蓝桥杯省赛C++A/B组
算法标签:二分,哈希
题目描述

四平方和定理,又称为拉格朗日定理:

每个正整数都可以表示为至多 4 个正整数的平方和。

如果把 0 包括进去,就正好可以表示为 4 个数的平方和。

比如:

5=02+02+12+22
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。

要求你对 4 个数排序:

0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。

输入格式

输入一个正整数 N。

输出格式

输出4个非负整数,按从小到大排序,中间用空格分开。

数据范围

0<N<5∗10E6

输入样例:

5

输出样例:

0 0 1 2

思路

暴力 o(n^3)

#include<iostream>
#include<cmath>
using namespace std;

int main()
{
    int n;
    cin>>n;
     //为什么遍历是到 a*a<= n  b*b+a*a ?
    //因为都是 n==a*a+b*b+c*c+d*d 确定 外层确定之后内层可以减去
    for(int a=0;a*a<=n;a++)
        for(int b=a;b*b+a*a<=n;b++)
            for(int c=b;b*b+a*a+c*c<=n;c++)
                {
                    int t=n-a*a-b*b-c*c;
                    int d=sqrt(t);
                     if(d*d==t)//这样必定是升序最小
                        {
                            cout<<a<<" "<<b<<" "<<c<<" "<<d;
                            return 0;
                        }
                }
}

5*10^6 开方2300 枚举不能过多

二分 O(N2logN)

#include<iostream>
#include<algorithm>

using namespace std;

const int N=5e6+10;
int n,cnt;

struct node{
    int v,c,d;
    bool operator < (const node &t)const    //重载< 因为sort给结构体排序,括号中的const表示参数a对象不会被修改,最后的const表明调用函数对象不会被修改
    {
        if(v!=t.v)return v<t.v;
        if(c!=t.c)return c<t.c;
        if(d!=t.d)return d<t.d;
    }
}node[N];
int main()
{
    cin>>n;
    for(int c=0;c*c<=n;c++)
        for(int d=c;d*d+c*c<=n;d++)
            node[cnt++]={c*c+d*d,c,d};
            
    sort(node,node+cnt);
    
    for(int a=0;a*a<=n;a++)
        for(int b=a;a*a+b*b<=n;b++)
            {
                int l=0,r=cnt-1;
                int t=n-a*a-b*b;
                while(l<r)// a<b,c<d,ab之后二分查找cd的值,所以一定是最小升序
                    {
                        int mid=l+r>>1;
                        if(node[mid].v>=t)r=mid;
                        else l=mid+1;
                    }
                if(node[l].v==t)
                    {
                        cout<<a<<" "<<b<<" "<<node[l].c<<" "<<node[l].d;
                        return 0;
                    }
            }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俺叫西西弗斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值