已掌握1.将一个正整数分解质因数,例如:输入90,打印出“90=2 * 3* 3 *5”。
算法思路:
A.从2开始的质因数去除该正整数n,能整除就输出该质因数,直到不能整除。
B.换下一个质数去除,重复上述操作,最后输出剩下的最后一个质因数。
void main()
{
int n;
scanf("%d",&n);
printf("%d=",n);
int flag=0;
for(int i=2;i<=n;i++)
{
if(n%i==0&&zs(i)==1)
{
while(n%i==0)
{
if(flag==0)
{
printf("%d",i);
flag=1;
}
else
printf("*%d",i);
n=n/i;
}
}
}
}
3.编写函数,判断两个整数是否互质,其中使用辗转相除法求两个正整数M,N的最大公约数。
思路:
A.利用辗转相除法求出最大公约数
B.如果最大公约数为1,则互质。
bool gcd(int m,int n)
{
int temp;
while(n!=0)
{
temp=m%n;
m=n;
n=temp; //利用辗转相除法,求的最大公约数存放在m中
}
if(m==1)return true; //如果最大公约数为1,则互质
else return false;
}
4.给出年月日,计算该日是该年的第几天。
#include<stdio.h>
int Is_LeapYear(int y) //闰年:1. 能被4整除但是不能被100整除 2. 能被400整除。
{
if((y%4==0&&y%100!=0)||y%400==0)
return 1;
else
return 0;
}
void main()
{
int monthes[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int year,month,day;
int i,days=0;
scanf("%d%d%d",&year,&month,&day);
if(Is_LeapYear(year)==1)//闰年的2月有29天
{
monthes[2]=29;
}
for(i=1;i<month;i++)
{
days+=monthes[i];
}
days+=day;
printf("%d",days);
}
5.求1+2!+3!+…+20!的和。
#include<stdio.h>
long long n(int i)
{
if(i==1)
return 1;
else
return n(i-1)*i;
}
void main()
{
long long sum=0;//要用long long 类型来存储结果,用int会溢出
int i;
for(i=1;i<=20;i++)
sum=sum+n(i);
printf("%lld\n",sum);
}
重点题/难题 6.编写一个程序,对输入的任意正整数n,打印出集合{0,1,…,n-1}的所有子集。例如:输入3时,输出是:{},{0},{1},{0,1},{2},{0,2},{1,2},{0,1,2}。
#include<stdio.h>
int main()
{
int n;
scanf("%d",&n);
for(int i = 0; i < (1<<n); i++) //从0~2^n-1个状态,共2^n个集合,(1<<n)等于1*(2^n)
{
printf("{");
int flag=0;
for(int j = 0; j < n; j++) //遍历二进制的每一位
{
if(i & (1 << j))//判断二进制第j位是否存在 按位与&运算,同1才为1,1<<j等于1的二进制左移j位
{
if(flag==1)//每个集合的第一个元素不用打逗号
printf(",");
printf("%d",j);//如果存在输出第j个元素
flag=1;
}
}
printf("}\n");
}
return 0;
}
//相关知识参考文章:https://blog.csdn.net/sugarbliss/article/details/81099340
7.十进制转换为二进制输出
思路:用十进制不断除2求余数,将余数存入数组,直到十进制数除到0为止。最后把得到的余数作为二进制,将数组从高位到低位输出。
#include<stdio.h>
void main()
{
int n;
scanf("%d",&n);
int a[32],i=0;
while(n>0)
{
a[i++]=n%2;
n=n/2;
}
i--;
while(i>=0)
{
printf("%d",a[i]);
i--;
}
}
8.设计一个函数,将整数数组a[n]划分为左右两部分,使左边所有元素值为奇数,右边所有元素值为偶数。
思路:i和j分别从首尾从前往后,从后往前遍历从左边找到第一个偶数,从右边找到第一个奇数,并进行交换。只要i<j就重复之前的操作。
#include<stdio.h>
void divide(int a[],int n)//n为数组长度
{
int i=0,j=n-1,temp;
while(i<j)
{
while(i<j&&a[i]%2!=0)//从左找到第一个偶数
i++;
while(i<j&&a[j]%2!=1)//从右找到第一个奇数
j--;
if(i<j)//交换两个数
{
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
}
9.设给定一个m行n列整形矩阵A,编写一个函数swap,使得他对A的元素进行交换,具体如下:第一个元素和倒数第一个元素交换,第二个元素和倒数第二个元素交换。
#include<stdio.h>
#define m 3
#define n 4
void swap(int a[m][n])
{
int i,j,temp;
int count=0;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
if(count==(m*n)/2)//因为是前后互换,所以只用交换到中间的一半就行了
return;
temp=a[i][j];
a[i][j]=a[m-1-i][n-1-j];
a[m-1-i][n-1-j]=temp;
count++;
}
}
10.设给定数组A[m]和B[n]是有序递增的,将A和B合并为一个有序递增的数组C
思路:只要A和B数组未遍历完,比较当前A[i]和B[j]中较小的元素存入C中,同时数组C下标加1.若A数组遍历完,则将B数组剩余元素接入C,反之亦然。
#include<stdio.h>
int m=5,n=5;
void fun(int a[],int b[],int c[])
{
int i=0,j=0,k=0;
while((i<m)&&(j<n)) //只要a和b的数组未遍历完
{
if(a[i]<b[j])
{
c[k]=a[i];
i++;
}
else
{
c[k]=b[j];
j++;
}
k++;
}
if(i==m)//若a数组遍历完
{
for(int d=j;d<n;d++)//将剩下的数组b接入c
{
c[k]=b[d];
k++;
}
}
if(j==n)//若b数组遍历完
{
for(int d=i;d<m;d++)//将数组b接入c
{
c[k]=a[d];
k++;
}
}
}
11.编写一个函数,从给定的数组A中删除元素值在X到Y之间的所有元素,但要保证数组的连续性。
思路:1.循环遍历数组,判断元素是否在x,y之间。
2.用k来统计当前已删除的元素个数,遍历时遇到非删除元素的就前移k个位置。
int del(int A[],int n,int x,int y)
{
int i=0,k=0;
while(i<n)
{
if((A[i]>=x)&&(A[i]<=y))//元素值在x到y之间
k++; //统计删除元素个数
else
A[i-k]=A[i]; //后面的元素往前移动
i++;
}
return n-k; //返回删除之后的元素个数
}
12.编写函数把整数数组中值相同的元素删除得只剩一个,并把剩余元素全部移到前面。
思路:第一层:循环遍历数组元素,第二层遍历判断元素是否等于a[i]
用k来统计删除的元素个数,遍历时遇到非删除元素就前移
#include<stdio.h>
int Delete(int a[],int n)
{
int i=0,j;
int k=0;
while(i<n)
{
for(j=i+1;j<n;j++){
if(a[j]==a[i]) //找与a[i]相同的值
{
k++;
}
else
a[j-k]=a[j]; //不相同的往前移
}
n=n-k; //如果每一轮有重复k个元素,将数组长度减少k
i++;
k=0;
}
return n;
}
13.使用数组精确计算M/N(0<M<N<=100)的各小数位的值。如果M/N是无限循环小数,则计算并输出它的第一循环节,同时要求输出循环节的起止位置(小数的序号)。
思路:求各小数位的值就是用余数乘10整除的结果,然后得到的新的余数,一直重复算到余数为0或出现循环。如果分子小于分母,那分子一来就相当于是余数。
#include<stdio.h>
void main()
{
int a[100];//a存小数,b存余数
int m,n,i=0,s=0;
printf("请输入分子分母:");
scanf("%d%d",&m,&n);//输入分子m,分母n
if(m>n) //如果分子大于分母
{
s=m/n;//得到整数部分
m=m%n; //得到余数为分子
}
while(m!=0)
{
m=m*10;
a[i]=m/n; //a[i]存放的是余数再整除得到的整数部分
m=m%n; //更新余数
for(int h=0;h<i;h++)
{
if(a[h]==a[i])//有重复值时开始循环
{
printf("从小数点%d位开始循环,到%d位结束\n",h+1,i);
m=0;
i--;
break;
}
}
i++;
}
printf("%d.",s);//输出整数部分
for(int j=0;j<i;j++)
{
printf("%d",a[j]);
}
printf("\n");
}
14.螺旋矩阵是整数的一种排列方式,例如5*5的螺旋矩阵如下:
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
编写程序生成并输出10*10的螺旋矩阵。
#include<stdio.h>
#define N 10
void main()
{
int a[10][10];
int k,n,i,j,num=1;
for(n=0;n<=N/2;n++)
{
for(j=n;j<=N-n-1;j++) //上半部分的行,从左向右
a[n][j]=num++;
for(i=n+1;i<N-n-1;i++) //右侧列,从上至下
a[i][N-n-1]=num++;
for(j=N-n-1;j>n;j--)//下半部分的行,从右至左
a[N-n-1][j]=num++;
for(i=N-n-1;i>n;i--)//左侧列,从下至上
a[i][n]=num++;
}
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
printf("%d\t",a[i][j]);
printf("\n");
}
}
15.设A为55的二维数组,编一函数,求A中出现频度最高的数。例如,55的矩阵如下:
3 2 4 5 1
10 9 3 4 2
8 7 6 7 7
3 3 4 1 2
4 5 3 1 1
出现频度最高的为3.
思路:用一维数组b来统计二维数组中各个数字出现的频度。
遍历二维数组,若a[i][j]出现,则以a[i][j]为下标的b数组值+1
#include<stdio.h>
int fun(int a[5][5])
{
int b[11]={0};
int i=0,j=0,k=0,count=0,max;
for(i=0;i<5;i++)
for(j=0;j<5;j++)
{
b[a[i][j]]++;
count++;
}
max=0;
for(k=0;k<count;k++)
if(b[k]>b[max])
max=k;
return max;
}
16.用二分法求方程:2x^3- 4x^2+3x-6=0,位于(-10,10)之间的一个根。
思路:根据零点定理判断f(a)*f(b)<0,则f(X)在(a,b)上至少有一个零点。
#include<stdio.h>
#include<math.h>
double f(double x)
{
return 2*x*x*x-4*x*x+3*x-6;
}
void main()
{
double a=-10,b=10;
double mid,y;
if(f(a)*f(b)<0)
{
while(a<=b)
{
mid=(a+b)/2;
y=f(mid);
if(y==0)
break;
else if(f(mid)*f(a)<0)//左移
b=mid;
else if(f(mid)*f(b)<0)//右移
a=mid;
}
}
printf("x=%.2lf\n",mid);
}
17.写一个函数,用牛顿迭代法求方程:2x3-4x2+3x-6=0在x=1.5附近的根。
思路:迭代公式x2=x1-f(x1)/f/(x1)
利用循环,只要x1,x2之差大于1e-8则不断进行x1=x2,x2=x1-f(x1)/f/(x1)
最后x2即为所求根值
#include<stdio.h>
#include<math.h>
float fun(float x) //x点函数值
{
return 2*x*x*x-4*x*x+3*x-6;
}
float fun1(float x)//求x点的导数值
{
return 6*x*x-8*x+3;
}
float Newton()
{
float x1=1.5,x2=x1-fun(x1)/fun1(x1);
while(fabs(x1-x2)>1e-8)
{
x1=x2;
x2=x1-fun(x1)/fun1(x1);
}
return x2;
}
18.编写程序,输入A,B,C,D四个点的坐标,假设ABC三点可以构成一个三角形,判断D点是否落在三角形内。
思路:若D点落在三角形内,则S(ADB)+S(ADC)+S(BDC)=S(ABC).
若不等,则没有落在三角形内。
#include<stdio.h>
#include<math.h>
typedef struct Point
{
double x,y;
}Point;
double dis(Point a,Point b)
{
double d;
d=sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
return d;
}
double area(Point a,Point b,Point c)
{
double p,s;
double A,B,C;
A=dis(a,b);
B=dis(a,c);
C=dis(b,c);
p=(A+B+C)/2;
s=sqrt(p*(p-A)*(p-B)*(p-C));//海伦公式
return s;
}
void Judge(Point A,Point B,Point C,Point D)
{
double s1,s2,s3,s;
s=area(A,B,C);
s1=area(A,B,D);
s2=area(A,C,D);
s3=area(B,D,C);
if(fabs(s-(s1+s2+s3))<1e-8) //等价于(s=s1+s2+s3),因为有开根号,所以可能不会完全相等,取一定误差范围的值就行。
{
printf("D点落在三角形内\n");
}
else
printf("D点没有落在三角形内\n");
return;
}
void main()
{
Point A,B,C,D;
A.x=1,A.y=1;
B.x=0,B.y=0;
C.x=2,C.y=0;
D.x=1,D.y=0.5;
Judge(A,B,C,D);
}
19.编写一个递归函数,计算组成给定正整数n的所有数字之和。
int f(int n)
{
if(n<10)//只有个位数时为递归出口
return n;
return n%10+f(n/10);//个位数加上递归调用
}
20.编写一个递归函数,求两个数X和Y的最大公约数。
int gcd(int x,int y)
{
if(y==0)
return x;
return gcd(y,x%y);
}
21.N(1<=N<90)阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式(要求采用非递归)
#include<stdio.h>
void main()
{
long long F[91];
F[1]=1;
F[2]=2;
int i;
for(i=3;i<=90;i++)
F[i]=F[i-1]+F[i-2];
int n;
scanf("%d",&n);
printf("%lld\n",F[n]);
}
22.求解两字符串的最长公共子串长度。
思路:
#include<stdio.h>
#include<string.h>
int dp[101][101];
#include<stdio.h>
int max(int a,int b)
{
return a>b?a:b;
}
void main()
{
char s1[101],s2[101];
scanf("%s%s",s1,s2);
int l1=strlen(s1);
int l2=strlen(s2);
for(int i=0;i<=l1;i++)
dp[i][0]=0;
for(int j=0;j<=l2;j++)
dp[0][j]=0;
int max=0;
for(int i=1;i<=l1;i++)
for(int j=1;j<=l2;j++)
{
if(s1[i-1]==s2[j-1])
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=0;
if(max<dp[i][j])max=dp[i][j];
}
printf("%d\n",max);
}
23.最长公共子序列(LCS)给定两个字符串A,B,求一个字符串,使得这个字符串是A和B的最长公共部分(子序列可以不连续)。
思路:
//dp[i][j]表示S1前i个字符的前缀子串和S2前j个字符的前缀子串的最长公共子串长度
//s1[i]=s2[j]时,dp[i][j]=dp[i-1][j-1]+1;
//s1[i]!=s2[j]时,dp[i][j]=max(dp[i-1][j],dp[i][j-1])
#include<stdio.h>
#include<string.h>
int dp[101][101];
#include<stdio.h>
int max(int a,int b)
{
return a>b?a:b;
}
void main()
{
char s1[101],s2[101];
scanf("%s%s",s1,s2);
int l1=strlen(s1);
int l2=strlen(s2);
for(int i=0;i<=l1;i++)
dp[i][0]=0;
for(int j=0;j<=l2;j++)
dp[0][j]=0;
for(int i=1;i<=l1;i++)
{for(int j=1;j<=l2;j++){
if(s1[i-1]!=s2[j-1])
dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
else
dp[i][j]=dp[i-1][j-1]+1;
}
}
printf("%d\n",dp[l1][l2]);
}
24.01背包问题:有n件物品,每件物品重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都只有1件。
思路:dp[i][v]表示前i件物品装入容量为v的背包中的最大价值。
对于第i件物品,放:dp[i][v]=dp[i-1][v-w[i]]+c[i];
不放:dp[i][v]=dp[i-1][v];
放的前提是v-w[i]>=0,如果v-w[i]<0,那么只能不放。即当前容量小于该物品重量,放不下。
所以,状态转移方程是:dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]),1<=i<=n,0<=v<=V;
边界是dp[0][v]=0.即前0件物品放入任何容量的背包中价值都为0.
#include<stdio.h>
int max(int a,int b)
{
return a>b?a:b;
}
int w[100],c[100],dp[100][100];
void main()
{
int n,V;
scanf("%d%d",&n,&V);//输入n,v
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);//每件物品的重量
for(int i=1;i<=n;i++)
scanf("%d",&c[i]);//每件物品的价值
for(int i=0;i<=V;i++) //边界
dp[0][i]=0;
int Max=0;
for(int i=1;i<=n;i++)
for(int v=0;v<=V;v++)
{
if(v<w[i])//当前背包容量小于物品重量,则无法放入该物品
dp[i][v]=dp[i-1][v];
else //能放
dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]); //取放或不放的最大值
if(Max<dp[i][v])Max=dp[i][v]; //记录最大总价值
}
printf("%d\n",Max);
}
25.给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
思路:定义dp[i]表示以nums[i]作为结尾的连续序列的最大和。
dp[i]=max(dp[i-1]+nums[i],nums[i])。每次比较nums[i]单独成为一段和加入dp[i-1]对应的那一段的大小。
#include<stdio.h>
int max(int a,int b)
{
return a>b?a:b;
}
int nums[100],dp[100];
void main()
{
int n,i;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&nums[i]);
dp[0]=nums[0];
int m=nums[0];
for(i=1;i<n;i++)
{
dp[i]=max(dp[i-1]+nums[i],nums[i]);
if(m<dp[i])
m=dp[i];
}
printf("%d\n",m);
}