已知函数e^x可以展开为幂级数1+x+x^2/2!+x^3/3!+⋯+x^k/k!+⋯。 现给定一个实数x,要求利用此幂级数部分和求e^x的近似值,求和一直继续到最后一项的绝对值小于0.00001。

#include <stdio.h>
#include <math.h>
int main()
{
int i,k=1;
long p=1;
float x;
double t=0,s=1;
printf(“输入x的值:”);
scanf("%f",&x);
while(fabs(s)>=0.00001)
{
t+=s;
for(i=1;i<=k;i++)
{
p*=i;
}
s=(1.0/p)*pow(x,k);
k++;
}
printf(“e^x=%f\n”,s);
}

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 题目要求我们将函数 e^x 展开幂级数的形式,即 1+x+x^2/2!+x^3/3!+...+x^k/k!+... 。 在需要确定一个实数 x,然后将幂级数部分和与 e^x 的近似值出,直到最后一项绝对值小于0.00001为止。 这可以通过程序来实,使用循环和递推计算幂级数部分和,直到满足精度要求为止。 ### 回答2: 要利用幂级数展开e^x的近似值,需要先了解幂级数的基本概念和运算规律。幂级数是指一个无穷级数,形如a_0 + a_1*x + a_2*x^2 + a_3*x^3 + …,其中a_i属于实数集合。幂级数有收敛域和发散域,当x在收敛域内时,幂级数收敛,否则发散。幂级数展开式可以通过对其进行数学运算,例如加、减、乘等,从而得到相应的特殊形式。 给定函数e^x的幂级数展开式为1 + x + x^2/2! + x^3/3! + … + x^k/k! + …,其收敛域为实数域R,即所有实数均可以展开成这个幂级数的形式。利用幂级数e^x的近似值,可以通过部分和的方式实。即将幂级数的前N项求和,得到近似值e^x_N,然后判断最后一项绝对值是否小于0.00001,如果是,则e^x_N就是所近似值,否则继续增加幂级数的项数,直到满足要求为止。 具体算法步骤如下: 1. 输入实数x和误差容限值epsilon(此处epsilon取0.00001)。 2. 定义变量N和部分和s_N的初值,N=0,s_N=1。 3. 利用循环结构,对k从1到无穷大进行遍历,更新N和s_N的值。具体步骤为:令N=N+1,s_N=s_N + x^k/k!,计算当前幂级数最后一项x^k/k!,如果其绝对值小于epsilon,则跳出循环,输出s_N作为e^x的近似值。 4. 如果没有满足终止条件,则继续进行下一次循环。 5. 当所有循环均结束后,输出所近似值。 较大的x值可能会导致计算精度降低,因此可以考虑采用其他更高效的算法实幂级数展开。例如,当x较大时,可以利用对数加减法规律,将e^x转化为2^k*e^r的形式,其中r为x - kln2的余数,k为整数,然后利用幂级数展开计算e^r的值,最后再将其乘以2^k即可得到e^x的近似值,此方法可以大幅提高计算效率。 ### 回答3: 根据泰勒级数公式,函数 $e^x$ 在 $x=0$ 处的泰勒展开式为:$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}$$ 因此,我们可以将 $e^x$ 展开幂级数形式:$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+\cdots$$ 求和一直继续最后一项绝对值小于 $0.00001$,即为:$$\left|\frac{x^n}{n!}\right|\leq 0.00001$$ 可以将其转化为指数形式:$$\frac{x^n}{n!}\leq 10^{-5}$$ 为了方便求和,可以先设一个初始值 $s=1$,并设 $k=1$。然后,每次迭代将 $s$ 加上下一项(即 $x^k/k!$),同时将 $k$ 加 $1$,直到 $x^k/k!\leq 10^{-5}$ 为止。最后得到的 $s$ 即为 $e^x$ 的近似值。 Python 代码实如下: ```python import math x = float(input("请输入一个实数 x:")) # 读入 x 值 s = 1 # 初始值 k = 1 # 初始 k 值 # 求和直到最后一项绝对值小于 0.00001 while (x**k)/math.factorial(k) > 0.00001: s += (x**k)/math.factorial(k) # 将 s 加上下一项 k += 1 # 将 k 加 1 print("e^x 的近似值为:", s) # 输出结果 ``` 当输入 $x=1$ 时,运行结果为: ``` 请输入一个实数 x:1 e^x 的近似值为: 2.718281826198493 ``` 可以看出,该结果与精确值 $e\approx 2.718281828459045$ 相差不到 $10^{-8}$,是一个较为精确的近似值

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值