HDU多校一

总结:由于是朝鲜出题,确实有点难,只做出来了1004那道题,就是找出来了abca这个串的特殊性,直接A了,后面的题理解不深没做好。

1004

题意

使用26个小写英文字母构造长度为n的字符串,问你用能最少个数的回文子串来区分字符串s的数量是多少

思路

分为n>=3和n<3讨论,当n<=3时每个子串的最小个数的回文子串都是相同的都为n故答案为26^n,当n>3时发现只有像abc这样字符都不同的串才符合要求,故答案都为262524

代码

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
const int N = 1005;
typedef long long ll;
const int maxn = 1e6 + 5;
ll bas[65], cnt;
//int a[maxn];
int q[maxn];
//map<int, int> vis;
vector<int> vec;
char stack[maxn];
char s[maxn];
int a[maxn], dp[maxn];
ll ksm(ll a, ll b, ll mod)
{
    ll res = 1;
    while (b)
    {
        if (b & 1)
            res = (res * (a % mod)) % mod;
        a = ((a % mod) * (a % mod)) % mod;
        b >>= 1;
    }
    return res;
}
int main()
{
    ll t;
    cin >> t;
    while (t--)
    {
        ll n;
        cin >> n;
        if (n == 1)
        {
            cout << 26ll << endl;
        }
        else if (n == 2)
        {
            cout << 676ll << endl;
        }
        else if (n == 3)
        {
            cout << 26 * 26 * 26 << endl;
        }
        else
        {
            cout<<26*25*24<<endl;
        }
    }
}

1005

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1000000009;
const int INVS5 = 276601605; // 1/sqrt(5)
const int A = 691504013;
const int B = 308495997;
const int maxn = 100010;
int base, last;

int qpow(int x, int y)
{
    int ans = 1;
    while (y)
    {
        if (y & 1)
            ans = (ll)x * ans % MOD;
        x = (ll)x * x % MOD;
        y >>= 1;
    }
    return ans;
}

int fac[maxn], invf[maxn], a[maxn], b[maxn];

void init(int n)
{
    fac[0] = a[0] = b[0] = 1;

    for (int i = 1; i <= n; i++)
    {
        fac[i] = (ll)fac[i - 1] * i % MOD;
        a[i] = (ll)a[i - 1] * A % MOD;
        b[i] = (ll)b[i - 1] * B % MOD;
    }
    invf[n] = qpow(fac[n], MOD - 2);
    for (int i = n - 1; i >= 0; i--)
        invf[i] = (ll)invf[i + 1] * (i + 1) % MOD;
}

inline int C(int n, int m){ // n >= m >= 0
    return n < m || m < 0 ? 0 : (ll)fac[n] * invf[m] % MOD * invf[n - m] % MOD;
}
int solve(ll n, ll c, int k)
{
    int ans = 0;
    for (int i = 0; i <= k; i++)
    {
        int tr=last,q;
        last = (ll)last * base % MOD;
        if (tr == 1)
            q = n % MOD;
        else
            q = (ll)tr * (qpow(tr, n % (MOD - 1)) - 1) % MOD * qpow(tr - 1, MOD - 2) % MOD;
        int res = (ll)C(k, i) * q % MOD;
        if (i & 1)
            ans -= res;
        else
            ans += res;
        ans %= MOD;
    }
    ans = (ll)ans * qpow(INVS5, k) % MOD;
    ans = (ans + MOD) % MOD;
    return ans;
}

int t, k;
ll n, c;
int main()
{
    init(100000);
    scanf("%d", &t);
    while (t--)
    {
        scanf("%lld%lld%d", &n, &c, &k);
        base = (ll)qpow(B, c % (MOD - 1)) * qpow(qpow(A, c % (MOD - 1)), MOD - 2) % MOD;
        last = qpow(a[k], c % (MOD - 1));
        printf("%d\n", solve(n, c, k));
    }
    return 0;
}

1006

题意

给你n个带值的点和m条边,其中第i个点的值为ai,接下来有q次操作,每次操作分为以下两种类型:
1.讲第u个点的权值修改为x
2.查询与第u个点的相邻点集的MEX。

思路

看到题干的修改和查询就想到线段树,但是看到这个通过率觉得还是自己太单纯了。
正解:根号分治。通过提高修改的复杂度从而降低查询的复杂度。我们先将度数大于等于根号N的点设为重点,反之设为轻点。本题中M<+1E5,所以重点数不超过350,然后对每一个重点建立一个权值树状数组。
当查询轻点时,我们直接暴力求MEX,重点是我们再树状数组上二分跑答案,修改时,我们只要修改当前点在图上的值和与当前点相邻重点的树状数组的权值。
Ps:为了防止炸内存,bit要是用vector。

代码

#include<bits/stdc++.h>
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define int long long 
using namespace std;
const int N = 3e5 + 10 ;
struct Edge{
    int nex , to;
}edge[N << 1];
int head[N] , TOT;
void add_edge(int u , int v)
{
    edge[++ TOT].nex = head[u] ;
    edge[TOT].to = v;
    head[u] = TOT;
}
vector<int>tree[N] , cnt[N] , vec[N];
int n , m , q , sq;
int a[N] , du[N] , zero[N] , vis[N];
int lowbit(int x)
{
    return x & (-x);
}
void add(int pos , int x , int id)
{
    int up = du[id] + 5;
    while(pos < up)
    {
        tree[id][pos] += x;
        pos += lowbit(pos); 
    }
}
int get_sum(int pos , int id)
{
    int res = 0;
    while(pos)
    {
        res += tree[id][pos];
        pos -= lowbit(pos);
    }
    return res;
}
void init(int n)
{
    TOT = 0;
    rep(i , 1 , n) zero[i] = head[i] = du[i] = 0 , vec[i].clear();
}
void change(int u , int x)
{
    if(!a[u]) for(auto i : vec[u]) zero[i] -- ;
    else
    {
        for(auto i : vec[u])
        {
            if(a[u] > du[i]) continue ;
            cnt[i][a[u]] -- ;
            if(!cnt[i][a[u]]) add(a[u] , -1 , i);
        }
    } 
    if(!x) 
    {
        for(auto i : vec[u]) zero[i] ++ ; 
        a[u] = x;
        return ; 
    } 
    for(auto i : vec[u])
    {
        if(x > du[i]) continue ;
        cnt[i][x] ++ ;
        if(cnt[i][x] == 1) add(x , 1 , i);
    }
    a[u] = x;
}
int query1(int u)
{
    rep(i , 0 , du[u]) vis[i] = 0;
    for(int i = head[u] ; i ; i = edge[i].nex)
    {
        int v = edge[i].to ;
        if(a[v] > du[u]) continue ;
        vis[a[v]] ++ ;
    }
    rep(i , 0 , 330) if(!vis[i]) return i;
}
int query2(int u)
{
    if(!zero[u]) return 0;
    int l = 1 , r = du[u] , res = du[u];
    while(l <= r)
    {
        int mid = l + r >> 1;
        if(get_sum(mid , u) < mid) r = mid - 1 , res = mid;
        else l = mid + 1;
    }
    return res;
}
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0) , cout.tie(0);
    int t ;
    cin >> t;
    while(t --)
    {
        cin >> n >> m ;
        sq = sqrt(n);
        rep(i , 1 , n) cin >> a[i]; 
        rep(i , 1 , m)
        {
            int u , v;
            cin >> u >> v;
            add_edge(u , v) , add_edge(v , u);
            du[u] ++ , du[v] ++ ;
        }
        rep(u , 1 , n) 
        {
            for(int i = head[u] ; i ; i = edge[i].nex)
            {
                int v = edge[i].to; 
                if(du[v] >= sq) vec[u].push_back(v);
            }
        }
        rep(u , 1 , n)
        {
            if(du[u] < sq) continue ;
            tree[u].resize(du[u] + 10);
            cnt[u].resize(du[u] + 10);
            rep(j , 0 , du[u]) tree[u][j] = cnt[u][j] = 0;
            for(int i = head[u] ; i ; i = edge[i].nex)
            {
                int v = edge[i].to ; 
                if(a[v] > du[u]) continue ;
                if(!a[v]) {zero[u] ++ ; continue ;}
                cnt[u][a[v]] ++ ;
                if(cnt[u][a[v]] == 1) add(a[v] , 1 , u);
            }
        }
        cin >> q; 
        while(q --)
        {
            int op , u , x;
            cin >> op;
            if(op == 1)
            {
                cin >> u >> x ;
                change(u , x);
            }
            else
            {
                cin >> u;
                if(du[u] <= sq) cout << query1(u) << '\n';
                else cout << query2(u) << '\n';
            }
        }
        init(n);
    }
    return 0;
}



1009

题意

多个测试样例。有n个机器人,给出每个机器人的加速度和起始位置。所有机器人同时向右移动,跑道太长了,可以假设没有终点线。在某一时间,如果某个机器人是唯一一个最右边的,此机器人为该时间的领先机器人。求领先机器人的数量。

思路

按照加速度从大到小排序,加速度相同时,按照初始位置从大到小排序。机器人加速度大于另一个机器人,初始位置小于另一个机器人,则机器人可以超过另一个机器人。即后面的机器人能追上前面的机器人,同加速度、同位置除外。。如有三个机器人,中间的机器人可以追上前边的机器人,所花时间要大于等于后面的机器人追上中间的机器人,那么中间的机器人不可能为领先机器人。位置相同且加速度相同的机器人并行不是领先机器人。

代码

#include<bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#define ll long long
#define inf 0x3f3f3f3f
const int N=1e5+5;
//set<string>b;
//set<string>::iterator it;
struct node
{
	ll p,a;
	friend bool operator < (node a,node b)
	{
		return a.a==b.a?a.p>b.p:a.a>b.a;
	}
}b[N],c[N],d[N];
double check(node a,node b)
{
	return (a.p-b.p)*1.0/(b.a-a.a);
}
int main()
{
    IO;
    ll T,n,i,j,k,t,cnt;
    cin>>T;
    while(T--)
    {
    	map<pair<int,int>,int>mp;
    	cin>>n;
    	for(i=1;i<=n;i++)
    	{
    		cin>>c[i].a>>c[i].p;
    		mp[make_pair(c[i].a,c[i].p)]++;
		}
		sort(c+1,c+1+n);
		t=c[1].p;j=0;b[++j]=c[1];
		for(i=2;i<=n;i++)
		{
			if(c[i].p>t)
			{
				t=c[i].p;b[++j]=c[i];
			}
		}
		k=0;
		for(i=j;i>=1;i--)
		{
			while(k>=2)
			{
				if(check(b[i],d[k])<=check(d[k],d[k-1]))
					k--;
				else
					break;
			}
			d[++k]=b[i];
		}
		cnt=0;
		for(i=1;i<=k;i++)
		{
			if(mp[make_pair(d[i].a,d[i].p)]==1)
				cnt++;
		}
		cout<<cnt<<endl;
	}
    return 0; 
}

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页