在动态规划问题中,可能会有许多可行解。每个解都对应一个值,我们希望找到其中最优的值。其基本思想就是将待解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。但是一般适用动态规划的问题,例如斐波那契数列,f(7)等于f(6)和f(5)的和,求解f(6)需要求解f(5)和f(4),求解f(5)需要求解f(4)和f(3),即经分解得到的子问题往往不是独立的。若用分治法来解决这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。所以在利用动态规划求解问题时,我们会用一个表来记录已经解决的子问题的答案,在需要时再找出已求解的答案,这样可以避免大量的重复计算,节省时间。
动态规划基本思想
最新推荐文章于 2021-11-19 14:16:21 发布