Glove 词向量

概述

GloVe的全称是GloVe: Gobal Vectors for Word Representation

是这门课的老师Christopher D. Manning的研究成果

GloVe目标是综合基于统计和基于预测的两种方法的优点。

模型目标:词进行向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息

流程:输入语料库–> 统计共现矩阵–> 训练词向量–>输出词向量

统计共现矩阵

设共现矩阵为X,其元素为 X i j X_{ij} Xij
X i j X_{ij} Xij的意义为:在整个语料库中,单词 i 和单词 j 共同出现在一个窗口中的次数。
举个栗子:
设有语料库:

i love you but you love him i am sad

这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号中心词窗口内容
0ii love you
1lovei love you but
2youi love you but you
3butlove you but you love
4youyou but you love him
5lovebut you love him i
6himyou love him i am
7ilove him i am sad
8amhim i am sad
9sadi am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:

X l o v e , b u t + = 1 X_{love, but}+=1 Xlove,but+=1
X l o v e , y o u + = 1 X_{love,you}+=1 Xlove,you+=1
X l o v e , h i m + = 1 X_{love,him}+=1 Xlove,him+=1
X l o v e , i + = 1 X_{love,i}+=1 Xlove,i+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵X:

iloveyoubuthimamsad
i0420222
love4053200
you2515200
but0350000
him2220020
am2000202
sad2000020

使用GloVe模型训练词向量

模型公式

先看模型,代价函数长这个样子:
J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
v i v_i vi, v j v_j vj是单词i和单词j的词向量, b i b_i bi , b j b_j bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。

模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:
X i = ∑ j = 1 N X i , j X_{i}=\sum_{j=1}^NX_{i,j} Xi=j=1NXi,j
其实就是矩阵单词i那一行的和;
P i , k = X i , k X i P_{i,k}=\dfrac{X_{i,k}}{X_{i}} Pi,k=XiXi,k
条件概率,表示单词k出现在单词i语境中的概率;
r a t i o i , j , k = P i , k P j , k ratio_{i,j,k}=\dfrac{P_{i,k}}{P_{j,k}} ratioi,j,k=Pj,kPi,k
两个条件概率的比率。

作者的灵感是这样的:
作者发现, r a t i o i , j , k ratio_{i,j,k} ratioi,j,k这个指标是有规律的,规律统计在下表:

r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的值单词j,k相关单词j,k不相关
单词i,k相关趋近1无限大
单词i,k不相关很小趋于1

很简单的规律,但是有用。
思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi​、 v j v_{j} vj​、 v k v_{k} vk​通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk​计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k​的函数为 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) \frac{P_{i,k}}{P_{j,k}}=ratio_{i,j,k}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=ratioi,j,k=g(vi,vj,vk)
即:
P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J = ∑ i , j , k N ( P i , k P j , k − g ( v i , v j , v k ) ) 2 J=\sum_{i,j,k}^N(\dfrac{P_{i,k}}{P_{j,k}}-g(v_{i},v_{j},v_{k}))^2 J=i,j,kN(Pj,kPi,kg(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在 O ( n 3 ) O(n^3) O(n3)的复杂度上进行计算,太复杂了,最好能再简单点。

现在我们来仔细思考 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:

  1. 要考虑单词 i 和单词 j 之间的关系,那 g ( v i , v j , v k ) g(v_{i},v_{j},v_{k}) g(vi,vj,vk) 中大概要有这么一项吧: v i − v j v_{i}-v_{j} vivj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么 v i − v j v_{i}-v_{j} vivj大概是个合理的选择;

  2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么 g ( v i , v j , v ) g(v_{i},v_{j},v) g(vi,vj,v)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (v_{i}-v_{j})^Tv_{k} (vivj)Tvk

  3. 然后作者又往 ( v i − v j ) T v k (v_{i}-v_{j})^Tv_{k} (vivj)Tvk的外面套了一层指数运算exp(),得到最终的 g ( v i , v j , v k ) = e x p ( ( v i − v j ) T v k ) g(v_{i},v_{j},v_{k})=exp((v_{i}-v_{j})^Tv_{k}) g(vi,vj,vk)=exp((vivj)Tvk)
    最关键的第3步,为什么套了一层exp()?

    套上之后,我们的目标是让以下公式尽可能地成立:
    P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=g(vi,vj,vk)
    即:
    P i , k P j , k = e x p ( ( v i − v j ) T v k ) \dfrac{P_{i,k}}{P_{j,k}}=exp((v_{i}-v_{j})^Tv_{k}) Pj,kPi,k=exp((vivj)Tvk)
    即:
    P i , k P j , k = e x p ( v i T v k − v j T v k ) \dfrac{P_{i,k}}{P_{j,k}}=exp(v_{i}^Tv_{k}-v_{j}^Tv_{k}) Pj,kPi,k=exp(viTvkvjTvk)
    即:
    P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) \dfrac{P_{i,k}}{P_{j,k}}=\dfrac{exp(v_{i}^Tv_{k})}{exp(v_{j}^Tv_{k})} Pj,kPi,k=exp(vjTvk)exp(viTvk)

然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即: P i , k = e x p ( v i T v k ) {P_{i,k}}={exp(v_{i}^Tv_{k})} Pi,k=exp(viTvk)并且 P j , k = e x p ( v j T v k ) {P_{j,k}}={exp(v_{j}^Tv_{k})} Pj,k=exp(vjTvk)

然而分子分母形式相同,就可以把两者统一考虑了,即:
P i , j = e x p ( v i T v j ) {P_{i,j}}={exp(v_{i}^Tv_{j})} Pi,j=exp(viTvj)
本来我们追求:
P i , k P j , k = g ( v i , v j , v k ) \dfrac{P_{i,k}}{P_{j,k}}=g(v_{i},v_{j},v_{k}) Pj,kPi,k=g(vi,vj,vk)
现在只需要追求:
P i , j = e x p ( v i T v j ) {P_{i,j}}={exp(v_{i}^Tv_{j})} Pi,j=exp(viTvj)
两边取个对数:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v_{i}^Tv_{j} log(Pi,j)=viTvj
那么代价函数就可以简化为:
J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=\sum_{i,j}^N(log(P_{i,j})-v_{i}^Tv_{j})^2 J=i,jN(log(Pi,j)viTvj)2
现在只需要在 O ( n 2 ) O(n^2) O(n2)的复杂度上进行计算,而不是 O ( n 3 ) O(n^3) O(n3),现在关于为什么第3步中,外面套一层 e x p ( ) exp() exp()就清楚了,正是因为套了一层 e x p ( ) exp() exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
然而,出了点问题。
仔细看这两个式子:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v_{i}^Tv_{j} log(Pi,j)=viTvj l o g ( P j , i ) = v j T v i log(P_{j,i})=v_{j}^Tv_{i} log(Pj,i)=vjTvi

l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v_{i}^Tv_{j} viTvj等于 v j T v i v_{j}^Tv_{i} vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
数学上出了问题。

补救一下好了。
现将代价函数中的条件概率展开:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v_{i}^Tv_{j} log(Pi,j)=viTvj
即为:
l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})-log(X_{i})=v_{i}^Tv_{j} log(Xi,j)log(Xi)=viTvj
将其变为:
l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v_{i}^Tv_{j}+b_{i}+b_{j} log(Xi,j)=viTvj+bi+bj
即添了一个偏差项 b j b_{j} bj,并将 l o g ( X i ) log(X_{i}) log(Xi)吸收到偏差项 b i b_{i} bi中。
于是代价函数就变成了:
J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^N(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,jN(viTvj+bi+bjlog(Xi,j))2
然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=\sum_{i,j}^Nf(X_{i,j})(v_{i}^Tv_{j}+b_{i}+b_{j}-log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
那么这个函数 f ( X i , j ) f(X_{i,j}) f(Xi,j)起了什么作用,为什么要添加这个函数呢?我们知道在一个语料库中,肯定存在很多单词他们在一起出现的次数是很多的(frequent co-occurrences),那么我们希望:

  • 这些单词的权重要大于那些很少在一起出现的单词,因此这个函数要是非递减函数(non-decreasing);
  • 但这个权重也不能过大,当到达一定程度之后当不再增加;
  • 如果两个单词没有在一起出现,也就是 X i j X_{i j} Xij,那么他们应该不参与到loss function的计算当中去,也就是f(x)要满足f(x)=0

为此,作者提出了以下权重函数:
f ( x ) = { ( x / x max ⁡ ) α  if  x < x m a x 1  otherwise  f(x)=\left \{ \begin{array}{cc} (x / x_{\max })^{\alpha} & \text { if } x<x_{max} \\ 1 & \text { otherwise } \end{array} \right. f(x)={(x/xmax)α1 if x<xmax otherwise 
实验中作者设定 x max ⁡ = 100 x_{\max }=100 xmax=100,并且发现 α = 3 / 4 \alpha=3 / 4 α=3/4时效果比较好。

这个函数图像如下所示:

到此,整个模型就介绍完了。

以上内容其实不能完全称之为推导,因为有很多不严谨的地方,只能说是解释作者如何一步一步构造出这个公式的,仅此而已。

我的理解

我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共线矩阵),也就是多个窗口进行更新

GloVe是如何训练的?

虽然很多人声称GloVe是一种无监督(unsupervised learing)的学习方式(因为它确实不需要人工标注label),但其实它还是有label的,这个label就是公式2中的 l o g ⁡ ( X i , j ) log⁡(X_{i,j}) log(Xi,j),而公式2中的向量 w w w w ~ \tilde w w~就是要不断更新/学习的参数,所以本质上它的训练方式跟监督学习的训练方法没什么不一样,都是基于梯度下降的。具体地,这篇论文里的实验是这么做的:采用了AdaGrad的梯度下降算法,对矩阵X中的所有非零元素进行随机采样,学习曲率(learning rate)设为0.05,在vector size小于300的情况下迭代了50次,其他大小的vectors上迭代了100次,直至收敛。 最终学习得到的是两个vector是 w w w w ~ \tilde w w~, 因为X是对称的(symmetric),所以从原理上讲 w w w w ~ \tilde w w~是也是对称的,他们唯一的区别是初始化的值不一样,而导致最终的值不一样。所以这两者其实是等价的,都可以当成最终的结果来使用。但是为了提高鲁棒性,我们最终会选择两者之和 w w w+ w ~ \tilde w w~作为最终的vector(两者的初始化不同相当于加了不同的随机噪声,所以能提高鲁棒性)。 在训练了400亿个token组成的语料后,得到的实验结果如下图所示:


这个图一共采用了三个指标:语义准确度,语法准确度以及总体准确度。那么我们不难发现Vector Dimension在300时能达到最佳,而context Windows size大致在6到10之间。

参考文献

http://www.fanyeong.com/2018/02/19/glove-in-detail/

https://blog.csdn.net/u014665013/article/details/79642083

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值