数据结构【堆(优先队列)】
前言
堆:
堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2] 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。 堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足 Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。
大根堆,即顶部为最大元素;小根堆相反。
一、堆的建立
数组实现
插入函数:
void insert(int x)
{
tot++;
heap[tot] = x;
int i = tot;
int j = i/2;
while((j>0) && heap[j] > heap[i])
{
swap(heap[j],heap[i]);
i=i/2;
j=i/2;
}
}
删除函数:
int pop()
{
int x = heap[1]; //返回堆顶
heap[1] = heap[tot];
tot--;
int i=1;
int j=i*2;
if(j+1 <= tot && heap[j+1] < heap[j]) j++;
while(j<=tot && heap[j] < heap[i])
{
swap(heap[i],heap[j]);
i=j; //迭代,
j=i*2;
if(j+1 <= tot && heap[j+1] < heap[j]) j++; //与子节点中小的那个比较
}
return x;
}
STL模板实现:(优先队列默认大根堆)
#include<iostream>
#include<queue>
using namespace std;
struct point{
int w;
bool operator < (const point a) const{ //使用小根堆,重载运算符
return w > a.w;
}
};
priority_queue<point> q;
插入节点:
q.push(t); //插入
a=q.top();//获取堆顶
q.pop();//删除堆顶
二、例题
链接:link.
AC代码:
#include<iostream>
#include<queue>
using namespace std;
struct point{
int l;
int r;
bool operator < (const point a) const{
return r > a.r;
}
};
struct node{
int l;
int r;
bool operator < (const node a) const{
return l < a.l;
}
};
priority_queue<point> q;
priority_queue<node> p;
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
{
point a;
cin>>a.l>>a.r;
q.push(a);
}
int ans=0;
int time=0;
while(!q.empty())
{
point now;
now = q.top();
q.pop();
if(time + now.l <=now.r)
{
time = time + now.l;
ans++;
node r; //定义当前已选的点 并加入p队列
r.l=now.l; r.r=now.r;
p.push(r);
}
else //当不满足时间要求时,进行一次反悔,从已选的点中找到耗时最大的,进行判断
{
node z; //从当前已选的中找到耗时最大的点
z=p.top();
if(now.l < z.l && time-z.l+now.l <= now.r) //如果当前可以比已选的好
{
p.pop();
node r; //定义 并加入p队列
r.l=now.l; r.r=now.r;
p.push(r);
time = time - z.l+now.l;
}
}
}
cout<<ans<<endl;
return 0;
}