题意:
求一个正整数n的约数的和的奇偶性
题解:
对于pi来说
①:=2则
…+
一定是奇数
② :≠2,则当
为偶数时
…+
为奇数,否则为偶数
对来说,只要其中一个
…+
为偶数,则
为偶数
所以对为奇数的情况,是除了2以外的所有因子的
为偶数
对约数和奇数的情况下,n的因子有,
或
这三种形式,这是因为对所有
为偶数,就可以表示成一个数的平方的形式,其中
的约数和也是奇数,因为奇数×奇数还是奇数
其中可以表示成
或
中的一种
例如:2^1=2*(1^2) 2^4=4^2 2^5=2*(4^2)
所以只需要计算和
的个数即可,小于n的
形式的个数有
,
形式的有
个
所以从1-n的约数和为偶数的个数就是-
个
代码很简单,就不放了