【规律题】【判断n的约数和奇偶】Sigma Function

题意:

   求一个正整数n的约数的和的奇偶性


题解:
  
 

  对于pi来说

  ①:pi=2则pi^{^{0}}+pi^{1}+…+pi^{^{ei}}…+pi^{^{ei}}一定是奇数

  ② :pi≠2,则当ei为偶数时pi^{^{0}}+pi^{1}+…+pi^{^{ei}}…+pi^{^{ei}}为奇数,否则为偶数

  对sum(n)来说,只要其中一个pi^{^{0}}+pi^{1}+…+pi^{^{ei}}…+pi^{^{ei}}为偶数,则sum(n)为偶数

  所以对sum(n)​​​​​​​为奇数的情况,是除了2以外的所有因子的ei为偶数

  对约数和奇数的情况下,n的因子有x^{_{2}},2*x^{2}2^{^{x}}这三种形式,这是因为对所有ei为偶数,就可以表示成一个数的平方的形式,其中2*x^{2}的约数和也是奇数,因为奇数×奇数还是奇数

  其中2^{^{x}}可以表示成x^{_{2}}​​​​​​​或2*x^{2}中的一种

  例如:2^1=2*(1^2)      2^4=4^2      2^5=2*(4^2)

  所以只需要计算2*x^{2}x^{_{2}}的个数即可,小于n的x^{_{2}}形式的个数有\sqrt{n}2*x^{2}形式的有^{\sqrt{(n/2)}}

  所以从1-n的约数和为偶数的个数就是n-^{\sqrt{n}}-^{\sqrt{(n/2)}}

 


代码很简单,就不放了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值