【拉格朗日差值法】 公式

 

拉格朗日插值法 

            给出对于给定的若n+1个点的坐标(x0,y0),(x1,y1)…,(xn,yn),对应于它们的次数不超过n的拉格朗日多项式只有一个。

           

           应用:给出平面上n+1个点,求一条穿过这n+1个点的n次多项式,或这个多项式在另一个点处的值。

           朴素的拉格朗日插值法公式:

                 

        

         

 

重心拉格朗日插值法

         所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式。它的优点是当插值点的个数增加一个时,将每个w_{j}都除以(xj-x(k+1)),就可以得到新的重心权w_{​{k+1}},计算复杂度为O(n),比重新计算每个基本多项式所需要的复杂度O(n^2)降了一个量级。

 

         

       

        

 

       

其中wj称为重心权

 

 

重心拉格朗日插值公式(第二型)或真正的重心拉格朗日插值公式

                

 

将(1)式的拉格朗日插值多项式用来对函数  插值,可以得到:

因为是一个多项式。

 

因此,将L(x)除以g(x)后可得到(2)式

 

继承了(1)式容易计算的特点,并且在代入x值计算L(x)的时候不必计算多项式。它的另一个优点是,结合切比雪夫节点进行插值的话,可以很好地模拟给定的函数,使得插值点个数趋于无穷时,最大偏差趋于零。同时,重心拉格朗日插值结合切比雪夫节点进行插值可以达到极佳的数值稳定性。第一型拉格朗日插值是向后稳定的的,而第二型拉格朗日插值是向前稳定的,并且勒贝格常数很小[9]

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
拉格朗日插值和切比雪夫插值都是求解函数近似值的方,常用于数据拟合和函数逼近。 拉格朗日插值是一种基于多项式的插值方。其基本思想是利用已知的一些点值来构造一个多项式函数,使其通过这些点,进而求出未知位置的函数值。这个多项式函数的形式可以用拉格朗日插值公式表示,即以已知的n个点为插值节点,构造一个次数不超过n-1的多项式,可以得到以下公式: f(x) = ∑(i=0 to n-1) yi * li(x) 其中,yi表示已知节点处的函数值,li(x)为拉格朗日基函数,可以表示为: li(x) = ∏(j=0 to n-1, j≠i) (x-xj)/(xi-xj) 切比雪夫插值也是一种基于多项式的插值方,其主要的优点在于它能够有效地避免龙格现象,即在等距节点情况下产生的插值误差波动问题。切比雪夫插值的基本思想是将插值节点取在切比雪夫多项式的n个零点上,然后利用已知的n个点,来构造一个次数不超过n-1的多项式函数。切比雪夫插值公式可以表示为: f(x) = ∑(i=0 to n-1) yi * Ti(x) 其中,yi为已知节点处的函数值,Ti(x)为切比雪夫多项式,可以表示为: Ti(x) = cos(i * arccos(x)) 关于这两种插值方的选择,一般来说,拉格朗日插值适用于节点数较少的情况,而切比雪夫插值则适用于节点数较多的情况,因为随着节点数的增加,切比雪夫插值的收敛速度更快。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值