LeetCode 1177. Can Make Palindrome from Substring--前缀和

  1. Can Make Palindrome from Substring

Given a string s, we make queries on substrings of s.

For each query queries[i] = [left, right, k], we may rearrange the substring s[left], …, s[right], and then choose up to k of them to replace with any lowercase English letter.

If the substring is possible to be a palindrome string after the operations above, the result of the query is true. Otherwise, the result is false.

Return an array answer[], where answer[i] is the result of the i-th query queries[i].

Note that: Each letter is counted individually for replacement so if for example s[left…right] = “aaa”, and k = 2, we can only replace two of the letters. (Also, note that the initial string s is never modified by any query.)

Example :

Input: s = “abcda”, queries = [[3,3,0],[1,2,0],[0,3,1],[0,3,2],[0,4,1]]
Output: [true,false,false,true,true]
Explanation:
queries[0] : substring = “d”, is palidrome.
queries[1] : substring = “bc”, is not palidrome.
queries[2] : substring = “abcd”, is not palidrome after replacing only 1 character.
queries[3] : substring = “abcd”, could be changed to “abba” which is palidrome. Also this can be changed to “baab” first rearrange it “bacd” then replace “cd” with “ab”.
queries[4] : substring = “abcda”, could be changed to “abcba” which is palidrome.

Constraints:

1 <= s.length, queries.length <= 10^5
0 <= queries[i][0] <= queries[i][1] < s.length
0 <= queries[i][2] <= s.length
s only contains lowercase English letters.

题解:先说说暴力处理过程哈,题目说查询[l,r]区间内的字符串,你可以修改其中k个字符变成任意你需要的字符,而且你可以对[l,r]内的字符任意排序,问排序加处理k个字符后的字符串能否构成回文串,这个比较简单了吧,就是判断区间[l,r]内每个字符出现的次数,如果每个字符出现的次数为偶数次不管,如果是奇数次就累计ans++,表明是多出来的没有可以匹配的,如果这个区间[l,r]是奇数长,ans-=1,因为中间那个字符可以单独保留,最后再ans/=2,表示需要处理的对数,如果此时的ans<=k说明足够处理,为true,不然为false,这个思路很好理解吧,然后每次就是从l到r一直累计每个字符出现的次数,判断,然后就超时了,因为肯定超时阿,字符串长度最大为1e5,查询的次数也是1e5,就绝对超时阿,于是我想到只是累计字符出现次数,可以利用前缀和辅助处理,很注意一个细节哈,题目一直强调字符串的每个字符肯定是小写字母a-z,也就是字符类型最多26种,那么我们可以定义num[100100][30]的字符串,num[x][‘a’]就可以表示区间[0,x]中a的出现次数,这个不难理解吧,于是26个字母,时间复杂度1e5*26,完全不会超时呢,于是查询的时候,就是依次判断26个字母出现的次数num[r][char]-num[l-1][char]的次数,思路就是这样了。

AC代码

class Solution {
public:
int num[100100][30];
vector<bool> canMakePaliQueries(string s, vector<vector<int>>& queries) 
{
memset(num,0,sizeof(num));
for(int i=0;i<s.length();i++)
{
    int x=s[i]-'a';
    if(i==0)
    num[i][x]=1;
    else 
    {
        for(int j=0;j<26;j++)
        num[i][j]=num[i-1][j];
        num[i][x]=num[i-1][x]+1;
    }
}
vector<bool>res;
for(int i=0;i<queries.size();i++)
{
    int l=queries[i][0],r=queries[i][1],k=queries[i][2];
    int ans=0;
    for(int j=0;j<26;j++)
    {
        if(l==0)
        {
            if(num[r][j]%2==1)ans++;
        }
        else{
            if((num[r][j]-num[l-1][j])%2==1)ans++;
        }
    }
    if((r-l+1)%2==1)ans--;
    ans/=2;
    if(ans<=k)res.push_back(true);
    else res.push_back(false);
}
return res;
}
};

在这里插入图片描述

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值