- 两个字符串的最小ASCII删除和
给定两个字符串s1, s2,找到使两个字符串相等所需删除字符的ASCII值的最小和。
示例 1:
输入: s1 = “sea”, s2 = “eat”
输出: 231
解释: 在 “sea” 中删除 “s” 并将 “s” 的值(115)加入总和。
在 “eat” 中删除 “t” 并将 116 加入总和。
结束时,两个字符串相等,115 + 116 = 231 就是符合条件的最小和。
示例 2:
输入: s1 = “delete”, s2 = “leet”
输出: 403
解释: 在 “delete” 中删除 “dee” 字符串变成 “let”,
将 100[d]+101[e]+101[e] 加入总和。在 “leet” 中删除 “e” 将 101[e] 加入总和。
结束时,两个字符串都等于 “let”,结果即为 100+101+101+101 = 403 。
如果改为将两个字符串转换为 “lee” 或 “eet”,我们会得到 433 或 417 的结果,比答案更大。
注意:
0 < s1.length, s2.length <= 1000。
所有字符串中的字符ASCII值在[97, 122]之间。
题解:
和这个题目LeetCode 1312. 让字符串成为回文串的最少插入次数–区间DP很像,有时间的话可以仔细想想两个题目的联系。老规矩,先思考某个方向的区间覆盖,于是我们有dp[i][j]表示字符串s1[i:n1]和字符串s2[j:n2]按照题目操作能得到的最小删除和,于是我们分别从s1.length()-1和s2.length()-1开始到0逐个匹配,于是有两种情况:
1.s1[i]==s2[j]
2.s1[i]!=s2[j]
很简单,针对情况1,直接dp[i][j]=dp[i+1][j+1],这个很好理解,因为此时的s1[i]和s2[j]是相等的,其次,针对情况2,如果不等,就是dp[i][j]=min(dp[i+1][j]+s1[i],dp[i][j+1]+s2[j]),相等于此时s1[i]和s2[j]不等,于是要么删除s1[i],要么删除s2[j],比较两种情况得到的最小结果。
于是我们的思路基本明确,老规矩,先写个递归函数求解答案,验证我们的思路,如下。
int solve(int l1,string s1,int l2,string s2)
{
if(l1>=s1.length()||l2>=s2.length())
{
int ans=0;
for(int i=l1;i<s1.length();i++)
ans+=s1[i];
for(int i=l2;i<s2.length();i++)
ans+=s2[i];
return ans;
}
if(s1[l1]==s2[l2])
return solve(l1+1,s1,l2+1,s2);
return min(solve(l1+1,s1,l2,s2)+s1[l1],solve(l1,s1,l2+1,s2)+s2[l2]);
}
此时只需要返回solve(0,s1,0,s2)就可以得到答案,然后通过测试数据可以看出这样没错误,于是我们的思路正确,现在按照递归函数转换成二维数组dp[maxn][maxn]进行时间优化,如下。
AC代码
class Solution {
public:
int dp[1010][1010];
int minimumDeleteSum(string s1, string s2) {
memset(dp,0,sizeof(dp));
for(int i=0;i<s1.length();i++)
for(int j=0;j<s2.length();j++)
dp[i][j]=1e9;
for(int i=s1.length()-1;i>=0;i--)这里是重点注意的初始化
dp[i][s2.length()]=dp[i+1][s2.length()]+s1[i];
for(int j=s2.length()-1;j>=0;j--)这里是重点注意的初始化
dp[s1.length()][j]=dp[s1.length()][j+1]+s2[j];
for(int i=s1.length()-1;i>=0;i--)
{
for(int j=s2.length()-1;j>=0;j--)
{
if(s1[i]==s2[j])
dp[i][j]=dp[i+1][j+1];
else
dp[i][j]=min(dp[i+1][j]+s1[i],dp[i][j+1]+s2[j]);
}
}
return dp[0][0];
}
};