LeetCode 1856. 子数组最小乘积的最大值--单调栈+前缀和

57 篇文章 0 订阅
12 篇文章 0 订阅
  1. 子数组最小乘积的最大值

一个数组的 最小乘积 定义为这个数组中 最小值 乘以 数组的 和 。

比方说,数组 [3,2,5] (最小值是 2)的最小乘积为 2 * (3+2+5) = 2 * 10 = 20 。

给你一个正整数数组 nums ,请你返回 nums 任意 非空子数组 的最小乘积 的 最大值 。由于答案可能很大,请你返回答案对 109 + 7 取余 的结果。

请注意,最小乘积的最大值考虑的是取余操作 之前 的结果。题目保证最小乘积的最大值在 不取余 的情况下可以用 64 位有符号整数 保存。

子数组 定义为一个数组的 连续 部分。

示例 1:

输入:nums = [1,2,3,2]
输出:14
解释:最小乘积的最大值由子数组 [2,3,2] (最小值是 2)得到。
2 * (2+3+2) = 2 * 7 = 14 。

示例 2:

输入:nums = [2,3,3,1,2]
输出:18
解释:最小乘积的最大值由子数组 [3,3] (最小值是 3)得到。
3 * (3+3) = 3 * 6 = 18 。

示例 3:

输入:nums = [3,1,5,6,4,2]
输出:60
解释:最小乘积的最大值由子数组 [5,6,4] (最小值是 4)得到。
4 * (5+6+4) = 4 * 15 = 60 。

提示:

1 <= nums.length <= 105
1 <= nums[i] <= 107

题解

先抛出一个单调栈模板:单调栈模板代码C++

题目比较好理解,就是原始数组有很多子数组,每个子数组都有自己的一个最小乘积,输出最小乘积最大的那个就行。

因为题目规定是数组中最小的元素去乘这个数组的和,所以反过来思考,我们暴力遍历每个数字,然后利用单调栈找到当前这个数字在区间[L,R]内是最小的,再利用前缀和算出sum[R]-sum[L-1],最后乘上当前这个数字即可。

AC代码

class Solution {
public:
    typedef long long ll;
    ll sum[100010];//累计前缀和
    int L[100010],R[100010];
    stack<int>q;
    void Stack_clear()//清空栈函数 
    {
        while(!q.empty())
        q.pop();
    }
    //这里数组以下标1开始
    void get_L(vector<int>arr)//得到左区间 
    {
        for(int i=0;i<arr.size();i++)
        L[i]=i;//初始化
        Stack_clear();
        for(int i=0;i<arr.size();i++)
        {
            if(q.empty()||arr[q.top()]<arr[i])
            q.push(i);
            else
            {
                while(q.empty()==false&&arr[q.top()]>=arr[i])
                {
                    L[i]=L[q.top()];
                    q.pop();
                }
                q.push(i);
            }
        }
    }
    void get_R(vector<int>arr)//得到右区间,其实就是把数组反向遍历的左区间求解 
    {
        for(int i=0;i<arr.size();i++)
        R[i]=i;//初始化
        Stack_clear();
        for(int i=arr.size()-1;i>=0;i--)
        {
            if(q.empty()||arr[q.top()]<arr[i])
            q.push(i);
            else
            {
                while(q.empty()==false&&arr[q.top()]>=arr[i])
                {
                    R[i]=R[q.top()];
                    q.pop();
                }
                q.push(i);
            }
        }
    }
    int maxSumMinProduct(vector<int>& nums) {
        sum[0]=nums[0];
        for(int i=1;i<nums.size();i++)
        sum[i]=sum[i-1]+nums[i];
        get_L(nums);
        get_R(nums);
        ll res=0;
        for(int i=0;i<nums.size();i++)
        {
            if(L[i]==0)
            res=max(res,nums[i]*sum[R[i]]);
            else
            res=max(res,nums[i]*(sum[R[i]]-sum[L[i]-1]));
        }
        return int(res%1000000007);

    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值