LeetCode 871. 最低加油次数--动态规划

  1. 最低加油次数

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,每个 station[i] 代表一个加油站,它位于出发位置东面 station[i][0] 英里处,并且有 station[i][1] 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。

当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:我们可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:我们无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
我们出发时有 10 升燃料。
我们开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,我们从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后我们开车抵达目的地。
我们沿途在1两个加油站停靠,所以返回 2 。

提示:

1 <= target, startFuel, stations[i][1] <= 10^9
0 <= stations.length <= 500
0 < stations[0][0] < stations[1][0] < ... < stations[stations.length-1][0] < target

题解

很绕的一个题目,一开始一直朝着二分、贪心还有搜索的方向去思考,注意到数据量比较小,是不是动态规划,反复思考发现动态规划是可以解决的。

我们定义dp[maxn],dp[x]表示加油了x次能到达的最大距离,那么就能很快的接近我们的目标target,于是输出当时最小的x为答案。

class Solution {
public:
    typedef long long ll;
    ll dp[505];
    int minRefuelStops(int target, int startFuel, vector<vector<int>>& stations) 
    {
        memset(dp,0,sizeof(dp));
        dp[0] = startFuel;//初始化
        for(int i=0;i<stations.size();i++)
        {
            for(int j=i;j>=0;j--)
            {
                if(stations[i][0]<=dp[j])//表示加了j次油能够到达当前的stations[i]位置
                {
                    dp[j+1]=max(dp[j+1],dp[j]+stations[i][1]);//把当前stations[i]的油量加给加了j+1次油能达到的最大距离
                }
            }
        }
        for(int i=0;i<=stations.size();i++)
        {
            if(dp[i]>=target)return i;//找到答案返回
        }
        return -1;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值