torch.nn.functional的F.softmax()用法

这篇博客介绍了PyTorch中F.softmax()函数的用法,通过两个不同维度的矩阵实例展示了如何按列和行方向进行softmax运算。文章详细解释了softmax函数在神经网络中的作用,以及如何在实践中应用该函数来处理激活值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F.softmax()就是softmax函数。

import torch
import torch.nn.functional as F
x = torch.rand(1,3,2)#1个3x2大小的矩阵
y = torch.rand(1,2,4)#1个2x4大小的矩阵
z = torch.bmm(x,y)
print('原始z矩阵:')
print(z)
print('按列方向上进行softmax:')
print(F.softmax(z, 1))
print('按行方向上进行softmax:')
print(F.softmax(z, 2))

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值