寒假笔记·各种数

卡特兰数

卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零项开始) : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
卡特兰数Cn满足以下递推关系 :
在这里插入图片描述

例题:P1722 矩阵 II

原题地址
题目描述

众所周知,在中国古代算筹中,红为正,黑为负……

给定一个1*(2n)的矩阵,现让你自由地放入红色算筹和黑色算筹,使矩阵平衡[即对于所有的i(1<=i<=2n),使第1~i格中红色算筹个数大于等于黑色算筹]

问有多少种方案满足矩阵平衡。

见样例解释。

输入输出格式

输入格式:
正整数 n

输出格式:
方案数t对100取模

输入输出样例

输入样例#1:
2
输出样例#1:
2
说明

样例解释: 红 黑 红 黑

红 红 黑 黑

1<=n<=100
代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
using namespace std;
int ka[110];
void tnt()
{
    int i,j;
    ka[0]=1;
    ka[1]=1;
    ka[2]=2;
    for(i=3;i<=100;i++)
    {
        for(j=0;j<=i-1;j++)
            ka[i]+=ka[j]*ka[i-1-j];
    ka[i]%=100;
    }
}
int main()
{
    int n;
    memset(ka,0,sizeof(ka));
    tnt();
    scanf("%d",&n);
    printf("%d\n",ka[n]);
    return 0;
}

例题:P1976 鸡蛋饼

原题地址
题目描述

最近小 x 又发现了一个关于圆的有趣的问题:在圆上有2N 个不同的点,小 x 想用 N 条线段把这些点连接起来(每个点只能连一条线段), 使所有的线段都不相交,他想知道这样的连接方案有多少种?

输入输出格式

输入格式:
有且仅有一个正整数 N 。 (N≤2999)

输出格式:
要求的方案数(结果 mod100000007)。

输入输出样例

输入样例#1:
24
输出样例#1:
4057031
代码:
那么假如我们在圆上画了2n个点,顺时针编号为1,2,3,4……,你便会发现,如果一个奇数点和另一个奇数点相连,一定会造成将剩下所没有连线的点分在两边的都是奇数个,而后两边必定有一个点没线连或穿越其中的一条线,那么就不可能完成了。那么我们可以把奇数点看成左括号,偶数点看成右括号,然后把圆切开,就变成了一个括号匹配的方案数问题。为什么圆可以切开呢?因为A连B和B连A是同一种切法。

在这里可以用h(n)=C(2n,n)/(n+1),用扩展欧几里德求逆元。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
long long int n;
long long int qq[3030];
void ka(long long int x)
{
    int i;
    for(i=0;i<x;i++)
    {
        qq[x]=qq[x]+qq[i]*qq[x-1-i];
        qq[x]%=100000007;
    }
    return;
}
int main()
{
    long long int i,j;
    scanf("%lld",&n);
    memset(qq,0,sizeof(qq));
    qq[0]=qq[1]=1;
    for(i=2;i<=n;i++)
    {
        ka(i);
    }
    printf("%lld\n",qq[n]);
    return 0;
}

汉诺塔公式

例题
ans=2^n-1

快速幂

思路见例题

例题:P1965 转圈游戏

原题地址
题目描述

n个小伙伴(编号从 0到 n-1)围坐一圈玩游戏。按照顺时针方向给 n个位置编号,从00 到 n-1。最初,第 0号小伙伴在第0号位置,第 1号小伙伴在第 1号位置,……,依此类推。游戏规则如下:每一轮第 0号位置上的小伙伴顺时针走到第 mm 号位置,第 1号位置小伙伴走到第 m+1号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n∼m+1 号位置上的小伙伴走到第 1 号位置,……,第n−1 号位置上的小伙伴顺时针走到第m-1号位置。

现在,一共进行了 10^k轮,请问 x 号小伙伴最后走到了第几号位置。

输入输出格式

输入格式:
共 1行,包含 4个整数 n,m,k,x每两个整数之间用一个空格隔开。

输出格式:
1个整数,表示 10^k
轮后 x号小伙伴所在的位置编号。

输入输出样例

输入样例#1:
10 3 4 5
输出样例#1:
5
说明

对于 30%的数据,0 < k < 7;

对于 80%的数据,0 < k < 10^7;

对于 100%的数据,1 <n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9
代码:
这道题不难可以推出(x+m*10^k)%n

根据模运算的的分配率可以得到 (x%n+m%n*10k%n)%n只需用快速幂求出10k就可以了。

#include<iostream> 
#include<cstdio> 
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std; 
int n,m,k,x;
int ksm(int a,int b)//快速幂部分
{
    int re=1;
    int t=a;
    while(b)
    {
        if(b&1) re=re*t%n; 
        t=t*t%n;
        b>>=1;
    }
    return re;
}
int main()
{
    cin>>n>>m>>k>>x;
    cout<<(x%n+m%n*ksm(10,k)%n)%n<<endl;
    return 0;
}

斯特林数

详细讲解
第一类斯特林数 S1(n,m) 表示的是将 n 个不同元素构成 m 个圆排列的数目。
第二类斯特林数 S2(n,m) 表示的是把 n 个不同元素划分到 m 个集合的方案数。

例题:P1287 盒子与球

原题地址
题目描述

现有r个互不相同的盒子和n个互不相同的球,要将这n个球放入r个盒子中,且不允许有空盒子。问有多少种方法?

例如:有2个不同的盒子(分别编为1号和2号)和3个不同的球(分别编为1、2、3号),则有6种不同的方法:

输入输出格式

输入格式:
两个整数,n和r,中间用空格分隔。(0≤n, r≤10)

输出格式:
仅一行,一个整数(保证在长整型范围内)。表示n个球放入r个盒子的方法。

输入输出样例

输入样例#1:
3 2
输出样例#1:
6
代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<iostream>
#include<cmath>
using namespace std;
int qq[15][15];
int main()
{
    int n,r,ans,i,j;
    scanf("%d%d",&n,&r);
    memset(qq,0,sizeof(qq));
    for(i=1;i<=n;i++)
        qq[i][1]=1;
    for(i=2;i<=n;i++)
        for(j=2;j<=r;j++)
            qq[i][j]=qq[i-1][j-1]+j*qq[i-1][j];
    ans=qq[n][r];
    for(i=2;i<=r;i++)
        ans*=i;
    printf("%d\n",ans);
    return 0;
}

乘法逆元

简单来说就是这样:在(mod p) 意义下( p 是素数),如果 a*a’=1 ,那么我们就说 a’ 是 a 的逆元。当然啦,反过来, a 也是 a’ 的逆元。

详细讲解

Python网络爬虫与推荐算法新闻推荐平台:网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值