Different Divisors(数论/暴力)

题目
参考
题意:给定一个数d,求一个最小的整数a,使得其
1、a至少有4个因子
2、a的任何两个因子相差大于等于d。

思路:任何一个数,其因子至少有1和它本身。设a刚好有4个因子,有两种情况, p 3 p^3 p3 p ∗ q p*q pq( p , q p,q p,q为素数)。可以证明,如果因子数更多,不是最优解。假设 p k ( k > 3 ) p^k(k>3) pkk>3是满足题意的数,那么 p 3 p^3 p3也满足题意且 p 3 p^3 p3< p k p^k pk。所以最小值为 m i n ( p ∗ q , p 3 ) min(p*q,p^3) min(pq,p3)

标程

#include <iostream>
#include <vector>

using namespace std;

void solve()
{
    int x;
    cin >> x;
    vector<int> p;
    for (int i = x + 1; ; i++)
    {
        int t = 1;
        for (int j = 2; j * j <= i; j++)
        {
            if (i % j == 0)
            {
                t = 0;
                break;
            }
        }
        if (t)
        {
            p.push_back(i);
            break;
        }
    }
    for (int i = p.back() + x; ; i++)
    {
        int t = 1;
        for (int j = 2; j * j <= i; j++)
        {
            if (i % j == 0)
            {
                t = 0;
                break;
            }
        }
        if (t)
        {
            p.push_back(i);
            break;
        }
    }
    cout << min(1ll * p[0] * p[1], 1ll * p[0] * p[0] * p[0]) << "\n";
}

int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        solve();
    }
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页