题意:求一个数,这个数至少有4个除数,且每个除数的差至少是d。
思路:每个数的除数肯定包含1,那么就从1开始找一个素数且这个素数与1的差至少是d,然后将目前的数更新为这个素数,再从这个素数+d开始,再找一个素数,且两数之差大于等于d。假设找到的第一个素数是a,第二个是b,答案就是a*b。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <queue>
#define ll long long
#define lowbit(x) ((~x+1)&x)
using namespace std;
bool prime(int n) {
for(int i=2; i<=sqrt(n); i++) {
if(n%i==0) return false;
}
return true;
}
int main() {
int t,d;
cin>>t;
while(t--) {
cin>>d;
int now=1;
ll a=0,b=0;
while(true) {
for(int i=now+d; ; i++) {
if(prime(i)) {
if(a) {
b=i;
break;
}
else {
a=i;
now = i;
break;
}
}
}
if(b!=0) break;
}
cout<<a*b<<endl;
}
return 0;
}