一、分布式事务理论
1. ACID理论
场景:单机架构中保证事务的理论
2. CAP理论
场景:分布式架构中保证事务的理论
概念
- 一致性:数据在不同的节点每一时刻都是一致的
- 可用性:一部分的节点出现异常,但是系统仍然可用
- 分区容错性:俩个节点分别在俩个区,如果出现网络问题导致俩个分区通信失败,没办法保证一致性了
2.1 CAP中的分区容错性
如图所示,如果数据库1和数据库2通讯出现问题了,无法同时满足一致性和可用性,因此一般的系统只能保证CP或者AP
- AP:大型系统采用的模式,承载大流量,高并发的同时,还可以满足高可用性,要保证数据的最终一致性
- CP:金融等要保证数据实时一致性的系统,牺牲可用性带来的用户体验比较差
3. BASE理论
场景:在AP的基础上进一步牺牲一致性,允许数据在一段时间内不一致,但最终会达到一致状态,保证基本可用性和柔性状态(柔性事务)
概念:
- 基本可用:某个节点挂掉不用影响用户的请求
- 软状态:允许数据出现中间状态
- 最终一致性:数据保证最终一致性
二、分布式事务解决方案-2pc
1. 概念
一阶段(准备阶段):协调者向参与者发送请求,询问是否可以提交事务
二阶段(提交阶段):如果参与者都返回yes,参与者提交事务,如果其中一个返回no,参与者回滚事务
2. 实践—SEATA
2.1 名词解释
- TC: seata服务端,用来控制分支事务的提交或回滚
- TM: 全局事务的发起者
- RM: 管理分支事务
- XID: 全局事务id
2.2 流程原理
- TM向TC发起全局事务,获取全局事务id
- 微服务链路中,RM注册到TC中
- 全局事务链路执行完成,TM根据有无异常向TC发起全局事务提交或回滚
- TC给RM发消息,通知分支事务的提交或回滚
2.3 SEATA模式(AT/TCC/SAGA/XA)
-
XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入。
-
TCC模式:最终一致的分阶段事务模式,有业务侵入。
-
AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式。
-
SAGA模式:长事务模式,有业务侵入。
FAQ
- 分布式事务2pc的缺点
● 性能差
● 存在阻塞问题,由此引入3pc;3pc相当是在一阶段的准备阶段新加了询问阶段,询问阶段的背景是提前检查是否有阻塞的问题