数组的基本信息
import numpy as np
ar = np.array([[1,2,3,4,5,6,7], [1,2,3,4,5,6,7]])
print(ar) # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分)
print(ar.ndim) # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rank
print(ar.shape) # 数组的维度,对于n行m列的数组,shape为(n,m)
print(ar.size) # 数组的元素总数,对于n行m列的数组,元素总数为n*m
print(ar.dtype) # 数组中元素的类型,类似type()(注意了,type()是函数,.dtype是方法)
print(ar.itemsize) # 数组中每个元素的字节大小,int32l类型字节为4,float64的字节为8
数组的构造
# 创建数组:arange(),类似range(),在给定间隔内返回均匀间隔的值。
print(np.arange(5.0,12,2)) # 返回5.0-12.0,步长为2
# 创建数组:linspace():返回在间隔[开始,停止]上计算的num个均匀间隔的样本。
ar2 = np.linspace(2.0, 3.0, num=5, endpoint=False)
# 创建数组:zeros()/zeros_like()/ones()/ones_like()
ar2 = np.zeros((2,2), dtype = np.int)
ar4 = np.zeros_like(ar3)
ar7 = np.ones_like(ar3)
# 创建一个正方的N*N的单位矩阵,对角线值为1,其余为0
print(np.eye(5))
ndarray的数据类型
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部
数组形状
# 数组形状:.T/.reshape()/.resize()
# .T方法:转置,一维数组转置后结果不变
ar1 = np.arange(10)
# 改变数组形状,不改变元素个数
ar3 = ar1.reshape(2,5) # 用法1:直接将已有数组改变形状
ar4 = np.zeros((4,6)).reshape(3,8) # 用法2:生成数组后直接改变形状
ar5 = np.reshape(np.arange(12),(3,4)) # 用法3:参数内添加数组,目标形状
# numpy.resize(a, new_shape):返回具有指定形状的新数组,如有必要可重复填充所需数量的元素。
ar6 = np.resize(np.arange(5),(3,4))
print(ar6)
# 注意了:.T/.reshape()/.resize()都是生成新的数组!!!
数组的复制
# 这里ar1和ar2指向同一个值,所以ar1改变,ar2一起改变
ar1 = np.arange(10)
ar2 = ar1
print(ar2 is ar1)
ar1[2] = 9
# copy方法生成数组及其数据的完整拷贝
ar3 = ar1.copy()
print(ar3 is ar1)
ar1[0] = 9
print(ar1,ar3)
# copy方法生成数组及其数据的完整拷贝
数组类型的改变
# 数组类型转换:.astype()
ar1 = np.arange(10,dtype=float)
# a.astype():转换数组类型
ar2 = ar1.astype(np.int32)
# 注意:养成好习惯,数组类型用np.int32,而不是直接int32
数组堆叠
# numpy.hstack(tup):水平(按行顺序)堆叠数组
a = np.arange(5) # a为一维数组,5个元素
b = np.arange(5,9) # b为一维数组,4个元素
ar1 = np.hstack((a,b)) # 注意:((a,b)),这里形状可以不一样
# numpy.vstack(tup):垂直(按列顺序)堆叠数组
a = np.array([[1],[2],[3]])
b = np.array([['a'],['b'],['c'],['d']])
ar2 = np.vstack((a,b)) # 这里形状可以不一样
# numpy.stack(arrays, axis=0):沿着新轴连接数组的序列,形状必须一样
a = np.arange(5)
b = np.arange(5,10)
ar1 = np.stack((a,b),axis = 0)按行
ar2 = np.stack((a,b),axis = 1)按列
# 重点解释axis参数的意思,假设两个数组[1 2 3]和[4 5 6],shape均为(3,0)
# axis=0:[[1 2 3] [4 5 6]],shape为(2,3)
# axis=1:[[1 4] [2 5] [3 6]],shape为(3,2)
数组拆分
# numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分
# 输出结果为列表,列表中元素为数组
ar = np.arange(16).reshape(4,4)
ar1 = np.hsplit(ar,2)
# numpy.hsplit(ary, indices_or_sections):将数组水平(逐列)拆分为多个子数组 → 按列拆分
# 输出结果为列表,列表中元素为数组
ar2 = np.vsplit(ar,4)
print(ar2,type(ar2))
数组简单运算
# 数组简单运算
ar = np.arange(6).reshape(2,3)
print(ar + 10) # 加法
print(ar * 2) # 乘法
print(1 / (ar+1)) # 除法
print(ar ** 0.5) # 幂
# 与标量的运算
print(ar.mean()) # 求平均值
print(ar.max()) # 求最大值
print(ar.min()) # 求最小值
print(ar.std()) # 求标准差
print(ar.var()) # 求方差
print(ar.sum(), np.sum(ar,axis = 0)) # 求和,np.sum() → axis为0,按列求和;axis为1,按行求和
print(np.sort(np.array([1,4,3,2,5,6]))) # 排序
# 常用函数
数组切片
# 基本索引及切片
# 一维数组索引及切片
print(ar[3:6])
# 二次索引,得到一维数组中的一个值
print(ar[2][1])
print(ar[2,2])
# 二维数组切片
print(ar[:2,1:]) # 切片数组中的1,2行、2,3,4列 → 二维数组
# 布尔型索引:以布尔型的矩阵去做筛选
ar = np.arange(12).reshape(3,4)
i = np.array([True,False,True])
print(ar[i,:])
# 索引的赋值
b[7:9] = 200
随机数生成
# numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组 —— 均匀分布
# 生成形状为4的一维数组
b = np.random.rand(4)
# 生成形状为2*3的二维数组,注意这里不是((2,3))
c = np.random.rand(2,3)
# numpy.random.randn(d0, d1, ..., dn):生成一个浮点数或N维浮点数组 —— 正态分布
samples1 = np.random.randn(1000)
# numpy.random.randint(low, high=None, size=None, dtype='l'):生成一个整数或N维整数数组
print(np.random.randint(2,6,size=5))
print(np.random.randint(2,6,(2,3)))
数据输入和输出
import os
os.chdir('C:/Users/Hjx/Desktop/')
ar = np.random.rand(5,5)
# 存储数组数据 .npy文件
np.save('arraydata.npy', ar)
# 读取数组数据 .npy文件
ar_load =np.load('arraydata.npy')
# 存储/读取文本文件
ar = np.random.rand(5,5)
np.savetxt('array.txt',ar, delimiter=',')
# np.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '):存储为文本txt文件
ar_loadtxt = np.loadtxt('array.txt', delimiter=',')
print(ar_loadtxt)
# 也可以直接 np.loadtxt('C:/Users/Hjx/Desktop/array.txt')
数组重复
# 重复数组的一部分
>>> np.repeat(3, 4)
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])
# 创建一个有重复模式的数组
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])