Nim 游戏 | 归纳推理法:轮流抓取石头,当n不为4的倍数使,我们总有办法赢得比赛

https://leetcode-cn.com/problems/nim-game/
题目:你和你的朋友,两个人一起玩 Nim 游戏:

桌子上有一堆石头。
你们轮流进行自己的回合,你作为先手。
每一回合,轮到的人拿掉 1 - 3 块石头。
拿掉最后一块石头的人就是获胜者。
假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。

示例 1:
	输入:n = 4
	输出:false 
解释:如果堆中有 4 块石头,那么你永远不会赢得比赛;
     因为无论你拿走 1 块、2 块 还是 3 块石头,最后一块石头总是会被你的朋友拿走。
     
示例 2:
	输入:n = 1
	输出:true
	
示例 3:
	输入:n = 2
	输出:true

归纳推理
假设最后一块石头在第 i 局结束。又因为我们是先手,则只有在奇数局结束时,我们才有可能赢。

分析过程:
1局结束。则需要 1~3 颗石头
3局结束。则,倒数第一局至少需要一颗石头
            倒数第二局可选1~3,则证明,倒数第二局至少需要4块石头。
            第一局的石头数需要满足,减去1~3颗石头后还可以剩4块,则可选4+1、4+2、4+3.
        即 5,6,7
5局结束。则,倒数第一局至少需要一颗石头
            ...
            倒数第三局:5,6,7
            倒数第4局,至少需要8颗石头。因为 他拿3,剩余5. 他拿2,剩余6,他哪1,剩余7
            第一局(倒数第5局):(8+1)=9,(8+2)=10,(8+3)=11
7局结束。则 ....
            倒数第一局:1,2,3
            倒数第三局:5,6,7
            倒数第五局:9,10,11
            倒数第7局:?
        观察规律可得,每隔一轮(奇数局),石头数量+4. 则可假设第7局需要石头为 13,14,15

注,每次我拿完之后,都要保证剩余的至少为4的倍数(最多拿3个),这样不管他拿几个,总会在下下局留下至少一个,让最后的石头被我拿走。
比如4块石头:

  • 他拿1块,剩余3块我可以全部拿走。
  • 他拿2块,剩余2块我可以全部拿走。
  • 他拿3块,剩余1块我可以全部拿走

证明第7局获胜的三种情况:

石头数量第一局(我)第二局(他)第三局(我)第四局(他)第五局(我)第六局(他)第七局(我)
13块石头
我拿1,剩12,
(剩余4的倍数,所以这里我只能选1块)
第3、5、7局同理
他拿1,剩11我拿3,剩8他拿1,剩7我拿3,剩4他拿1,剩3我全拿,完
他拿2,剩2我拿2,完
他拿3,剩1我拿1,完
他拿2,剩6我拿2,剩4他拿1,剩3我全拿,完
他拿2,剩2我拿2,完
他拿3,剩1我拿1,完
他拿3,剩5我拿1,剩4他拿1,剩3我全拿,完
他拿2,剩2我拿2,完
他拿3,剩1我拿1,完
他拿2,剩10我拿2,剩8
他拿3,剩9我拿1,剩8

如上表所示,只要我们每次选则后,让下一轮都是4的倍数,那么我们总能赢。


而此题解题的关键在与,有多少个石头的时候我们能赢。观察能赢的1,3,5,7局的初始石头数量如下:

  • 1:1,2,3
  • 3:5,6,7
  • 5:9,10,11
  • 7:13,14,15

可以发现,只要初始石头数量不为4的倍数,那么我们总有办法获胜。

class Solution {
public:
    bool canWinNim(int n) {
        return n % 4 != 0;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫RT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值