“卖水人”的生意经,要比机器人厂商更懂机器人

技术公司的生存法则。

生态链中每个角色都有自己的生存法则。对于机器人产业链中的技术“卖水人”,它的核心生存法则除了要闷头搞技术,更重要的是要比机器人厂商更懂机器人,这不仅很大程度决定了自身的技术路线,更决定了能否切中厂商们的“心头好”。

同质化下的“你追我赶”,赶不走危机

在经历了野蛮生长时代过后,扫地机器人的发展似乎陷入了同质化竞争的魔咒。在行业中,能够真切的感受到每个机器人厂商无不为产品创新绞尽脑汁,但即便如此,能够戳中市场G点的创新仍不多见。在你追我赶之下,还未依靠新“点子”建立优势,转眼间就成了同行的标配。

不过,虽然同质化竞争看似严重,但却不是最关键的问题。更应该关注的是,在越卷越高的产品力面前,扫地机器人的渗透率却依然进展缓慢。根据Statista统计,目前我国的扫地机器人渗透率仍仅有约6%,与欧美国家普遍10%以上的渗透率相比,差距明显。乐观的说,我国扫地机器人渗透率还有巨大的提升空间,但如何把蛋糕吃进嘴里,整个行业却显得束手无策。

或许趋高的价格浇灭了市场的购买热情,但以极度注重“务实”的国内消费者而言,当产品能够极大程度发挥实用价值时,会大大降低消费者对价格的敏感性。当下的问题是,机器人产品力在提高,但还不够高。扫地机器人还需要多个能够戳中市场G点的创新。而这需要整个产业链的并力。

INDEMIND作为产业链中的技术“卖水人”,正在发挥独有的技术价值。

要比厂商更懂机器人

正如博世能够成为全球第一大汽车零部件供应商,原因不仅仅是成立的久,也不是技术遥遥领先,最关键的是他们比多数车企更懂车。INDEMIND深知这一点,在长期技术研发中不仅注重自身的技术塔基,更加关注机器人在不同领域的真实反馈,通过实勘实测,以“局外人”的视角对机器人的迭代方向和技术实现产生了诸多新想法。

在基础技术方面,INDEMIND推出了市面上首款真正意义的家用机器人纯视觉解决方案,不仅从产品形态上革新,也延续了INDEMIND高度自研的一贯风格,在功能表现、场景适配都有着质的提升,达到了激光+视觉融合方案同等水平的技术效果,且成本只有其1/3,在提供技术价值取胜的同时,满足行业的成本、先进性等要求。

需要提到的是,INDEMIND全栈自研了轻量化VSLAM算法(不基于谷歌Cartographer算法)、路径规划算法、智能决策引擎等核心技术,达到行业领先水平。

在前沿技术探索上,INDEMIND同样有着丰富积累,其中包括三维语义建图技术,智能决策技术、语义交互技术以及脏污识别技术等,对于扫地机器人均有着重要价值。

立体感知,尽收“眼”底。目前主流的传统2D栅格地图、拓扑地图虽然能够描述环境中存在的障碍物几何特征及其环境结构信息,但却缺乏机器人用于理解环境、人机/物机交互等业务逻辑的高层次语义信息,而INDEMIND三维语义建图技术,不仅包含物体及环境的结构信息,还有物体类别、功能属性等“常识”性信息,这为机器人人机交互、智能作业、智能避障等提供了底层数据支持。

工程机演示,不代表最终量产效果标题

自主决策,赋能“人脑”思维。想让机器人实现满足要求的自主作业,离不开智能决策。通过将设备端、云端智能决策平台、大数据平台三端结合,INDEMIND建立了一套智能决策引擎,能够在语义层次上理解环境信息,模仿人类大脑对环境理解的方式,并进行策略处理,实现多种智能化的业务逻辑。同时,基于关键数据能够不断更新算法模型,持续提升场景处理和问题应对能力。

被忽略的问题,脏污识别。现有的机器人无法像人一样知道哪里脏哪里不脏,脏污的类型和分布情况,清洁流程是以依照规划路线按部就班的方式进行作业,缺少灵巧变通,在面对复杂脏污时,可能会产生新的清洁问题,导致清洁效果差或重复清扫。基于对当下机器人的深度追踪,INDEMIND敏锐地感知到脏污识别将是机器人的下一个必备技术。

在清洁过程中,机器人能够将脏污检测结果及位置与场景地图和轨迹进行叠加,实现全场景的脏污地图管理。标题

作为重要技术目标,INDEMIND通过长期攻关,最终研发了以视觉图像算法配合融合摄像头及主动补光策略构建而成的脏污识别技术,在实际表现上,目前已能够达到平均脏污检出率99%以上(包含常见固体、液体脏污),支持任何地面材质、花色、光线下的透明、半透明,不透明液体及干涸污渍识别、颗粒状脏污识别、粉末状脏污识别,是目前行业极少成熟且性能优异的技术方案。

通过实际验证,无论是机器人的建图效果、清洁功能及效率、指令作业,均有着跨代式提升。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(类): 自然环境与类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与类活动目标的标注数据,支撑生物多样性分析与类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值