图的广度优先和深度优先遍历

本文详细介绍了图的两种遍历方法——广度优先遍历(BFS)和深度优先遍历(DFS)。对于BFS,通过队列实现层序遍历,利用HashSet避免回路。DFS则利用递归或栈实现路径探索,同样借助HashSet防止重复访问。这两种方法都是图论中的基础操作,在解决实际问题如搜索路径、最短路径等时非常关键。
摘要由CSDN通过智能技术生成

广度优先遍历

思路分析:
类似于二叉树的层序遍历,用一个队列来保存每一个遍历到的节点的所有邻接节点,依次入队列,然后每出队列一个,就把它所有的邻接节点入队列。
有一个问题:如果这样的话,可能会出现回路,要保证遍历过的节点不会再遍历,怎么实现?很简单,我们用一个set把所有遍历过的记录下来,每次入队列时,先判断是否在set中存在,如果存在,就不入队列。
代码:

    public static void bfs(Node node){
        Queue<Node> queue=new LinkedList<>();
        HashSet<Node> set=new HashSet<>();
        queue.add(node);
        set.add(node);
        while (!queue.isEmpty()){
            node=queue.poll();
            System.out.println(node.value);
            for (int i = 0; i < node.nexts.size(); i++) {
                if(!set.contains(node.nexts.get(i))){
                    queue.add(node.nexts.get(i));
                    set.add(node.nexts.get(i));
                }
            }
        }
    }

深度优先遍历

思路分析:
深度优先遍历,我们每次只需要选择一条路,一直走到黑就行。但是,深度优先遍历的复杂地方在于,如何实现返回上一级时,再判断是否还有其他路可走呢?当然,保存中间变量这个问题,有个极佳的数据结构,那就是递归,递归就是系统帮我们保存中间信息,然后压栈的过程。
此题用递归很容易求解,不过,我这里是自己写了一个栈,**每次把它任意一个下一个节点压入栈之前,先把它本身入栈,这样,就能保证,当返回时,还能拿到这个节点,再换一个未重复遍历过的节点,**当然,重读遍历这件事,还是用HashSet实现。
代码:

    //图的深度优先遍历
    public static void dfs(Node node){
        if(node==null){
            return;
        }
        Stack<Node> stack=new Stack<>();
        HashSet<Node> set=new HashSet<>();
        stack.push(node);
        set.add(node);
        System.out.println(node.value);
        while (!stack.isEmpty()){
            node=stack.pop();
            for (Node n : node.nexts){
                if(!set.contains(n)){
                    set.add(n);
                    stack.push(node);
                    stack.push(n);
                    System.out.println(n.value);
                    break;
                }
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值