题目描述
从二叉树的任意一个节点出发,可以向上或者向下走,但沿途的节点只能经过一次,到达任意一个节点之间的节点个数,叫做他俩之间的距离。那么二叉树任意两个节点之间都有距离,请求出整颗二叉树的最大距离。
思路分析
二叉树的递归问题,其实很多都有套路,一般的套路就是从左右孩子那里拿数据,然后处理后,再向上返回。这种题,往往复杂的地方在于分析题目,需要拿什么数据,怎么处理后,能解决问题?
观察此题,题目要求求出任意两点之间的距离的最大值。
可以想到,最大值的可能性,如果包含根节点,那么,应该就是包含根节点的一个弧线,也就是,左孩子树的高度,加上右孩子的树高度,再加根节点的1,组成弧线。
除了包含根节点形成弧线,也可以不包含根节点,孩子树自身有弧。孩子自身的弧线,也是孩子作为根节点加上左右树高度。
因此,每个节点,从自己左右孩子那里拿到高度和最大长度(就是弧长),然后,抽象出传递的信息,封装成Info。
然后比较一下,左右孩子弧线的较大值和左右孩子高度加1比较,较大的作为当前节点的弧线长度返回给上层。
代码
class Info{
int height;
int length;
public Info(int height,int length){
this.height=height;
this.length=length;
}
}
class Node{
int value;
Node left;
Node right;
public Node(int value){
this.value=value;
}
}
public static Info process(Node node){
if(node.left==null&&node.right==null){
return new Info(1,1);
}
Info left=process(node.left);
Info right=process(node.right);
int height=Math.max(left.height,right.height)+1;
int length=Math.max(left.height+ right.height+1,Math.max(left.length,right.length));
return new Info(height,length);
}