论文翻译解读
文章平均质量分 94
OneTenTwo76
这个作者很懒,什么都没留下…
展开
-
论文翻译解读:Anytime Bottom-Up Rule Learning for Knowledge Graph Completion【AnyBURL】
近十年来,知识图谱完成已成为一个生动的研究领域。虽然目前的研究主要是基于将知识图嵌入到低维向量空间的想法,但符号方法的关注要少得多[Wangetal.,2017]。然而,这种方法有一个很大的优势,那就是它们能够根据触发预测的规则产生解释。在本文中,我们提出了一种自底向上的技术来有效地从大型知识图中学习逻辑规则。...原创 2022-07-20 18:26:00 · 1600 阅读 · 1 评论 -
论文翻译解读:Logmap:Logic-based and scalable ontology matching
在本文中,我们提出了logmap–一个具有“内置”推理和诊断功能的高度可扩展的本体匹配系统。据我们所知,LogMap是唯一能够处理包含数十(甚至数百)个类的语义丰富的本体的匹配系统。与大多数现有工具相比,LogMap还实现了“实时”的不满意检测和修复算法。我们对NCI、FMA和SNOMEDCT本体的实验证实,我们的系统可以有效匹配现有最大的生物医学本体。OWL本体广泛应用于生物和医学领域。9,5,16,13。现有的大多数工具都是基于词汇匹配算法的,也可以利用本体的结构或访问外部源,如WordNet;....原创 2022-07-20 18:15:28 · 905 阅读 · 0 评论 -
论文翻译解读:PARIS :Probabilistic Alignment of Relations, Instances, and Schema
语义Web面临的主要挑战之一是集成越来越多独立设计的本体。在这项工作中,我们提出了一种自动对齐本体的方法PARIS。PARIS不仅与实例联系在一起,还与关系和阶级联系在一起。实例级的对齐与模式级的对齐相互影响。因此,我们的系统为本体对齐问题提供了一个真正全面的解决方案。**该方法的核心是概率性的,即我们根据概率估计来衡量匹配程度。这允许PARIS不需要任何参数调优就可以运行。**通过大量实验验证了该算法的有效性和精确性。特别地,我们在一些世界上最大的本体的实验中获得了大约90%的精确度。**动机。**本体论原创 2022-07-17 20:06:46 · 1045 阅读 · 0 评论 -
论文翻译解读:learning logic rules for reasoning on knowledge graphs【RNNLogic】
本文研究了知识图推理逻辑规则的学习。逻辑规则在用于预测时提供了可解释的说明,并能够推广到其他任务,因此对学习至关重要。现有的方法要么存在搜索空间大(如神经逻辑编程)的问题,要么存在奖励稀疏(如基于强化学习的技术)的优化效果不佳的问题。为了解决这些局限性,本文提出了一个名为RNNLogic的概率模型。RNNLogic将逻辑规则作为潜在变量,同时用逻辑规则训练规则生成器和推理预测器。我们**开发了一个基于EM的优化算法。在每次迭代中,对推理预测器进行更新,以探索生成的逻辑规则进行推理。...原创 2022-07-16 13:53:03 · 1339 阅读 · 0 评论 -
论文翻译解读:Translating Embeddings for Modeling Multi-relational Data【TransE】
我们考虑在低维向量空间中嵌入多关系数据的实体和关系的问题。我们的目标是提出一个权威模型,该模型易于训练,包含较少的参数,并且可以扩展到非常大的数据库。因此,我们提出了TransE,一种通过将关系解释为对实体的低维嵌入操作的平移来建模关系的方法。尽管简单,但这个假设被证明是强大的,因为大量的实验表明,TransE在两个知识库上的链接预测方面明显优于最先进的方法。此外,它可以成功地在拥有1M实体、25k关系和17M以上训练样本的大规模数据集上训练。https。...原创 2022-07-15 14:35:22 · 768 阅读 · 0 评论 -
论文翻译解读:a benchmarking study of embdedding-based entity alignment for knowledge graphs【02】
5.1 实验设定 对关系三元组使用固定的batch大小、归一化会产生更好的结果、评价指标选择Hits@m(m=1,5),MR,MRR5.2 结果分析 关系嵌入仍有贡献【KDCoE,GCNAlign,AttrE,IMUSE和RDGCN在密集数据集上表现较好】 现有方法不能很好处理长尾实体,使用额外字面量可以得到缓解【KDCoE,AttrE,IMUSE,MultiKE和RDGCN】 多映射关系给许多嵌入方法带来了挑战【MTransE,JAPE】 候选空间和负例越多,越难将目标实体排在顶部 只有正样本原创 2022-07-12 08:40:43 · 464 阅读 · 0 评论 -
论文翻译解读:Distributed Representations of Words and Phrases and their Compositionality【Word2Vec优化】
替代分层softmax方案–负采样词表示固有的限制:不关心次序,无法表示习惯用于本文提出在文本中查找短语的方法用向量表示整个短语会使skip-gram更具表现力高频词二次取样,因为in,the,a没什么信息,可以加速训练,提高算法精度最近引入的连续跳过图模型是一种学习高质量分布式向量表示的有效方法,它捕获了大量精确的句法和语义词关系。在本文中,我们提出了几个扩展,以提高向量的质量和训练速度。通过对频繁出现的单词进行子采样,我们获得了显著的加速,并学习了更规则的单词表征。我们还描述了分层softmax的一个简原创 2022-07-11 08:57:53 · 1212 阅读 · 0 评论 -
论文翻译解读:a benchmarking study of embdedding-based entity alignment for knowledge graphs【01】
1 介绍 实体对齐主要的挑战:独立创造的KGs之间的符号,语言和图式异质性 实体对齐框架:嵌入模块,对齐模块,交互模块,迭代技术 创新点:每个模块主流技术选择,各个模型的特点 提出基准数据集,新的采样算法 开源代码库 嵌入技术探讨2.1 文献概述 嵌入模型:平移模型,语义匹配模型,深度模型,以上三种一般用于链路预测,也称补全 传统实体对齐:基于OWL等价推理,基于相似性计算,使用统计机器学习,众包提高准确性 嵌入实体对齐:平移模型【基于关系三元组进行实体对齐】,图卷积网络2.2 分类原创 2022-07-09 21:35:00 · 457 阅读 · 0 评论 -
论文翻译解读:Efficient estimation of word representations in vector space【Word2Vec】
提出了两种新的模型架构,从大数据集中计算单词的连续向量表示1 介绍将words看做原子单位,词间没有相似度,因为word在词汇表中用索引表示,例如N-grams1.1 目标希望相似的单词往往彼此互相靠近,并且单词能够有多重相似度发现单词表示的相似度高于简单的语法规则,使用词偏移技术:V(“king”)- V(“man”) + V(“woman”)约等于V(“queen”“)设计1.2 前人工作词向量技术能够被用来极大程度的提高、简化许多NLP应用2 模型架构主要关注使用神经网络学习到的分布式单词表示,因为神原创 2022-07-08 21:44:18 · 986 阅读 · 0 评论