论文翻译解读:learning logic rules for reasoning on knowledge graphs【RNNLogic】

Rnnlogic:在知识图谱上学习进行推理的逻辑规则

简要信息

序号 属性
1 模型名称 RNNlogic
2 所属领域 知识图谱
3 研究内容 知识图谱推理
4 核心内容 推理的逻辑规则
5 GitHub源码 RNNlogic
6 论文PDF learning logic rules for reasoning on knowledge graphs
7 发表年份 2021

摘要

本文研究了知识图推理逻辑规则的学习。逻辑规则在用于预测时提供了可解释的说明,并能够推广到其他任务,因此对学习至关重要。现有的方法要么存在搜索空间大(如神经逻辑编程)的问题,要么存在奖励稀疏(如基于强化学习的技术)的优化效果不佳的问题。为了解决这些局限性,本文提出了一个名为RNNLogic的概率模型。RNNLogic将逻辑规则作为潜在变量,同时用逻辑规则训练规则生成器和推理预测器。我们**开发了一个基于EM的优化算法。在每次迭代中,对推理预测器进行更新,以探索生成的逻辑规则进行推理。然后在E-step中,利用规则生成器和推理预测器,通过后验推理从所有生成的规则中选择一组高质量的规则;在M-step中,规则生成器用在E-step中选择的规则进行更新。**在四个数据集上的实验证明了RNNLogic的有效性。

1 介绍

知识图是真实世界事实的集合,在各种应用中都很有用。每个事实通常被指定为一个三元组(h, r, t)或等价的r(h, t),这意味着实体h与实体t有关系。例如,比尔·盖茨是微软的联合创始人。由于不可能收集到所有的事实,所以知识图是不完整的。因此,知识图的一个基本问题就是利用已有的事实进行推理来预测缺失的事实,即知识图推理。

本文研究了学习推理规则用于KG推理。例如,可以提取一个规则∀X, Y, Z爱好(X, Y)←朋友(X, Z)∧爱好(Z, Y),意思是如果Z是X的朋友,Z有爱好Y,那么Y也有可能是X的爱好,然后可以用这个规则来推断人的新爱好。这种逻辑规则能够提高推理的可解释性和精度(Qu & Tang, 2019;Zhang et al., 2020)。此外,逻辑规则还可以重用和一般化到其他领域和数据(Teru & Hamilton, 2020)。然而,由于搜索空间大,推断出高质量的逻辑规则用于知识图的推理是一项具有挑战性的任务。

事实上,人们已经提出了各种各样的方法来从知识图中学习逻辑规则。大多数传统方法,如路径排序(Lao & Cohen, 2010)和马尔可夫逻辑网络(Richardson & Domingos, 2006),都将图上的关系路径列举为候选逻辑规则,然后学习每个规则的权重,作为规则质量的评估。最近也有一些基于神经逻辑编程(Y ang et al., 2017)和神经定理证明(Rockt¨aschel & Riedel, 2017)的方法,它们能够以可微的方式同时学习逻辑规则及其权重。虽然这些方法在经验预测上是有效的,但它们的搜索空间是指数级的,很难识别出高质量的逻辑规则。此外,最近的一些工作(Xiong et al., 2017)将问题制定为一个序列决策过程,并使用强化学习来搜索逻辑规则,这大大降低了搜索的复杂性。然而,由于训练中的动作空间大、奖励稀疏,这些方法的性能还不尽如人意。

在本文中,我们提出了一种原则性的概率方法RNNLogic,它克服了上述局限性。我们的方法由一个规则生成器和一个带有逻辑规则的推理预测器组成,它们同时被训练以相互增强。**规则生成器提供逻辑规则供推理预测器进行推理,而推理预测器提供有效的奖励来训练规则生成器,大大减少了搜索空间。**具体地说,对于每个问答对,例如q = (h, r, ?)和a = t,我们在查询和现有知识图G的条件下对答案的概率进行建模,即p(a|G, q),其中一组逻辑规则z1被视为潜在变量。规则生成器为每个查询的逻辑规则定义一个先验分布,即p(z|q),该分布由一个循环神经网络参数化。推理预测器以逻辑规则和已有的知识图为条件,计算答案的可能性,即G (p(a|G, q, z))。在每次训练迭代中,我们首先从规则生成器中采样一些逻辑规则,并进一步更新推理预测器,以尝试这些规则进行预测。**然后使用EM算法(Neal & Hinton, 1998)对规则生成器进行优化。在E-step中,根据后验概率从所有生成的规则中选择一组高质量的逻辑规则。在M-step中更新规则生成器,模仿E-step中选择的高质量规则。**大量的实验结果表明,RNNLogic在知识图推理方面的性能优于目前最先进的方法。此外,RNNLogic还能够生成高质量的逻辑规则。

2 相关工作

我们的工作是关于知识图推理逻辑规则学习的现有研究成果。大多数传统方法将查询实体和回答实体之间的关系路径枚举为候选逻辑规则,并进一步了解每个规则的标量权重,以评估质量。代表性的方法包括马尔可夫逻辑网络(Kok & Domingos, 2005;Richardson & Domingos, 2006;Khot等人,2011),关系依赖网络(Neville & Jensen, 2007;Natarajan等人,2010年),规则挖掘算法(Gal´araga等人,2013年;Meilicke等人,2019),路径排名(Lao & Cohen, 2010;Lao et al., 2011)和概率个性化页面排名(ProPPR)算法(Wang et al., 2013;2014 a, b)。最近的一些方法通过以可微的方式同时学习逻辑规则和权重来扩展这一思想,其中大多数是基于神经逻辑编程(Rockt¨aschel & Riedel, 2017;杨等,2017;Cohen等人,2018;Sadegh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值