细讲逻辑斯蒂回归与朴素贝叶斯、最大熵原理的爱恨交织(一)

本文探讨了逻辑斯蒂回归与朴素贝叶斯、最大熵原理之间的关系,从生态学的逻辑斯蒂模型出发,解释了逻辑斯蒂回归的数学原理,指出其与sigmoid函数的联系,并通过导数性质揭示了它们在概率和分类问题中的应用。
摘要由CSDN通过智能技术生成

好早之前就发现逻辑斯蒂回归好像和朴素贝叶斯里面的后验概率公式还有最大似然、信息熵、交叉熵、伯努利分布、回归分析、几率(odds)等等有着千丝万缕CZFZ(错综复杂)、PSML(扑朔迷离)的关系。一直感觉逻辑斯蒂分布好像在很多地方都比较受宠并且有一些优良的性质经常被提及,不过又说不太清楚到底是怎么回事。

于是,
我终于,
去翻了教材讲义知乎CSDN之后,
把这些东西给理清楚了!


第一节 —— 另辟蹊径从生态学入手


种群生态学考虑单一物种的生存模式和状态。其中,关于种群个体数量的变化,有所谓的马尔萨斯模型和逻辑斯蒂模型。

马尔萨斯模型

种群在某一状态下增长速率与种群个体数成正比。种群越大,增速越快。 这比较好理解,例如一只羊一年生一只,那么三只羊一年就能生三只。种群个体数从一变成三增了三倍,种群数量的增速也变为了原来的三倍。 把这个正比关系写成微分方程:y(t) 表示种群大小,它是时间 t 的函数。r 是比值系数:

d y ( t ) d t = r ⋅ y ( t ) \frac{dy(t)}{dt} = r·y(t) dtdy(t)=ry(t)

解这个微分方程:

1 y d y = r d t \frac{1}{y} dy = rdt y1dy=rdt

⇒ ∫ 1 y d y = ∫ r d t \Rightarrow\int\frac{1}{y}dy = \int rdt y1dy=rdt

⇒ l o g y = r t \Rightarrow logy = rt logy=rt

⇒ y = e r t \Rightarrow y = e^{rt} y=ert

原来这就是我们熟悉的指数函数。

这个模型的不足在于,它只考虑了“生”的过程,没考虑“存”的实际情况。即便“生”的速率与种群大小成正比,但是能否存活还要受环境因素的制约。

逻辑斯蒂模型

种群大小增长到一定程度后,由于种内个体之间争夺有限的资源,存活率就会下降,导致种群个体数量的增长率下降。于是,有人对上述模型进行了改进,就有了(生态学中的)逻辑斯蒂模型。

这个模型依旧是用一个微分方程表示种群个体数量与增长速率的关系: d y ( t ) d t = r y ( t ) × [ 1 − y ( t ) K ] \frac{dy(t)}{dt} = ry(t)\times[1-\frac{y(t)}{K}] dtdy(t)=ry(t)×[1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值