Day 5(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization Week 1)

Algorithm Design

决定:
layers
hidden units
learning rates
activation functions
训练:
train sets, 70%
dev sets, 20%
test sets, 10%

Bias and variance

high bias = under fitting 高偏差 欠拟合
hihg variance = over fitting 高方差 过度拟合

train set error:
dev set error:
dev > train: overfitting dev 泛化性不够好 high varience
dev 15 < train 16: under fitting
dev 30 > train 15: both

Basic recipe

  1. High bais?
    To training data
    New net work, more layers, units, bigger network to fit training data
    只要人类可识别,一个足够大的网络应该是可以有好的表现的
  2. High varience?
    More data, reguleration, other achietecture.

Regularization

  1. L2 regularization: weight decay
  2. Frobenins norm

Numerical approximation of gradients

梯度检验:
通过一个大三角形的面积,而不是一个小三角形的面积来估算梯度,会更加的准确
通过一个大三角形的面积,而不是一个小三角形的面积来估算梯度,会更加的准确
在这里插入图片描述
Dropout layer, in test set, do not apply it and do not keep the 1/keep_pro factor in the calcualtions

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值