【数据结构与算法】七种常见排序算法


总结《大话数据结构》,本文相关代码均由C++编写。

目录

冒泡排序

void bubblesort(int a[], int num){
	for (int i = 0; i < num; i++){
		for (int j = num - 1; j >= i+1; j--){
			if (a[j] < a[j - 1])
				swap(a[j], a[j - 1]);
		}
	}
}

简单选择排序

void selectedsort(int a[], int num){
	for (int i = 0; i < num; i++){
		int min = i;
		for (int j = i+1; j <num; j++){
			if (a[j] < a[min])
				min = j;
		}
		if (i != min){
			swap(a[i], a[min]);
		}
	}
}

直接插入排序

void insertsort(int a[], int num){
	for (int i = 1; i < num; i++){
		int temp = a[i];
		int j;
		for (j= i-1; a[j]>temp; j--){
			a[j + 1] = a[j];
		}
		a[j+1] = temp;
	}
}

希尔排序

void shellsort(int a[], int n){
	int i, j;
	int jump = n;
	do{
		jump = jump / 3+1;
		for (i = jump; i<n; i++){//与直接插入不同的是,这边从gap开始,不是gap+1;
			if (a[i]<a[i - jump]){
				int temp = a[i];
				for (j = i - jump; a[j]>temp; j -= jump){
					a[j + jump] = a[j];
				}
				a[j + jump] = temp;
			}
		}
	} while (jump > 1);
}

堆排序

void adjust_heap(int* a, int node, int size)
{
	int left = 2 * node + 1;
	int right = 2 * node + 2;
	int max = node;
	if (left < size && a[left] > a[max])
		max = left;
	if(right < size && a[right] > a[max])
		max = right;
	if (max != node)
	{
		swap(a[max], a[node]);
		adjust_heap(a, max, size);
	}
}

void heap_sort(int* a, int len)
{
	for (int i = len / 2 - 1; i >= 0; --i)
		adjust_heap(a, i, len);

	for (int i = len - 1; i >= 0; i--)
	{
		swap(a[0], a[i]);     // 将当前最大的放置到数组末尾
		adjust_heap(a, 0, i); // 将未完成排序的部分继续进行堆排序
	}
}

归并排序

void merge(int* a, int start, int mid, int end)
{
	int *tmp = new int[end - start + 1];    // tmp是汇总2个有序区的临时区域
	int i = start;         // 第1个有序区的索引
	int j = mid + 1;       // 第2个有序区的索引
	int k = 0;             // 临时区域的索引

	while (i <= mid && j <= end)
	{
		if (a[i] <= a[j])
			tmp[k++] = a[i++];
		else
			tmp[k++] = a[j++];
	}

	while (i <= mid)
		tmp[k++] = a[i++];

	while (j <= end)
		tmp[k++] = a[j++];

	// 将排序后的元素,全部都整合到数组a中。
	for (i = 0; i < k; i++)
		a[start + i] = tmp[i];

	delete[] tmp;
}

void mergeSortUp2Down(int* a, int start, int end)
{
	if (a == NULL || start >= end)
		return;

	int mid = (end + start) / 2;
	mergeSortUp2Down(a, start, mid);   // 递归排序a[start...mid]
	mergeSortUp2Down(a, mid + 1, end); // 递归排序a[mid+1...end]
	merge(a, start, mid, end);
}

快速排序

int Partition(int a[], int i, int j){
	int temp = a[i];
	while (i < j){
		while (i<j&& a[j]>=temp){
			j--;
		}
		swap(a[i], a[j]);
		while (i < j&& a[i] <= temp){
			i++;
		}
		swap(a[i], a[j]);
	}
	return i;//这里不管是返回i还是j都是一样的,因为最后会相等
}
void quicksort(int a[], int low, int high){
	if (low<high){
		int q = Partition(a, low, high);
		quicksort(a, low, q - 1);
		quicksort(a, q + 1, high);
	}
}

时间复杂度、空间复杂度和稳定性总结

排序方法平均情况最好情况最坏情况辅助空间稳定性
冒泡排序O( n 2 n^{2} n2)O(n)O( n 2 n^{2} n2)O(1)稳定
简单选择排序O( n 2 n^{2} n2)O( n 2 n^{2} n2)O( n 2 n^{2} n2)O(1)稳定
直接插入排序O( n 2 n^{2} n2)O(n)O( n 2 n^{2} n2)O(1)稳定
希尔排序O(nlogn)~O( n 2 n^{2} n2)O(( n 1.5 n^{1.5} n1.5)O( n 2 n^{2} n2)O(1)不稳定
堆排序O(nlogn)O(nlogn)O(nlogn)O(1)不稳定
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)稳定
快速排序O(nlogn)O(nlogn)O( n 2 n^{2} n2)O(nlogn)~O( n 2 n^{2} n2)不稳定
1.冒泡排序原理:通过相邻的两个数据之间的比较和交换,使关键码较小的记录逐渐从底部上浮,关键码较大的记录逐渐从顶部下沉。 算法实现:对n个数据进行n-1次排序,每次从剩余元素的第一个开始进行相邻元素交换比较,实现由小到大的排序。 2.选择排序原理:通过多次关键码的比较,使得在每一趟排序中第一位最小。 算法实现:对n个数据,比较n-1趟,在每趟区间中将最小数下标记录在k中,若k不为1,将b[1]与b[k]交换,始终保持剩余元素的第一个数为该趟最小值,实现由小到大的排序。 3.插入排序原理:将原序列逐个分开,每次比较插入一个新的关键码,与已经排好序的记录码比较,寻找合适位置插入该记录码,实现排序。 算法实现:对n个数据,比较n-1趟,以第一个数据为初始序列,每趟插入一个原序列中的关键码,并进行比较,若找到序列中比该关键码大的数据,则该数据之前一位即为插入位置,将该数据连同之后的所有数据后移一位,进行插入,实现由小到大的排序。 4.快速排序原理:通过一趟排序将要排序的记录分割成独立的两部分,其中一部分的所有记录关键码比另一部分的都小,再按此方法对两部分数据进行递归,实现快速排序。 算法实现:从每趟数据的左边界向右搜索一个比它大的数据1,同时从右边界搜索一个比它小的数据2,若数据1的下标大于数据2的下标,则交换位置,如此循环,再对关键数据的左半部分和右半部分进行递归,实现由小到大的排序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值