模型评估参数解释

最近在学习机器学习的相关知识,对模型的评估有了新的了解,几位博主写的很详细了。

分类准确率分数、召回率 、ROC曲线、AUC值、混淆矩阵、roc_auc_score

 

精确率(Precision)、召回率(Recall)、F1-score、ROC、AUC

https://blog.csdn.net/guhongpiaoyi/article/details/53289229?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control

模型评估指标-1-基础篇

https://zhuanlan.zhihu.com/p/353384266

sklearn.metrics中的评估方法(accuracy_score,recall_score,roc_curve,roc_auc_score,confusion_matrix)

网址连接:

https://blog.csdn.net/hlang8160/article/details/78040311

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值