一.定积分的性质(证明题)
解答:
解析:
题目要求证明不等式相等,
则需要证明该定积分的单调性,
最后利用端点值[π/4,π/2]带入该定积分即可
(往往端点值带入定积分后的值,就是题目的值)
二.计算下列定积分
(1)解答:
解析:
考点一:
第二换元法
看见题目的分母是根号,符合“第二换元法”的结构,就要假设x=sect。(对第二换元法的5个结构要敏感)
考点二:
考察tanx函数和secx函数的计算
主要是给你一个函数值y,你要知道x=多少
方法是:secx=1/cosx,tanx=sinx/cosx,把问题转化为cosx的关键值计算,可以直接画坐标图求解
考点三:
掌握secx的图像
secx在[0,π/2]内>0;[π/2,3π/2]内<0
当定积分去掉积分符号时,要注意secx的正负值
考点四:
sec函数与其他三角函数的关联
[1]secx的原函数和图像 与cosx有关
[2]secx的求导和积分 与tanx有关
且secxdx的积分=ln|secx+tanx|+c
考点五:
代值计算secx和tanx
secx转化为1/cosx后,画坐标图求值即可
tanx直接画坐标图求值即可